Generalization Capability for Imitation Learning
- URL: http://arxiv.org/abs/2504.18538v1
- Date: Fri, 25 Apr 2025 17:59:59 GMT
- Title: Generalization Capability for Imitation Learning
- Authors: Yixiao Wang,
- Abstract summary: Imitation learning holds the promise of equipping robots with versatile skills by learning from expert demonstrations.<n>However, policies trained on finite datasets often struggle to generalize beyond the training distribution.<n>We present a unified perspective on the generalization capability of imitation learning, grounded in both information theorey and data distribution property.
- Score: 1.30536490219656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning holds the promise of equipping robots with versatile skills by learning from expert demonstrations. However, policies trained on finite datasets often struggle to generalize beyond the training distribution. In this work, we present a unified perspective on the generalization capability of imitation learning, grounded in both information theorey and data distribution property. We first show that the generalization gap can be upper bounded by (i) the conditional information bottleneck on intermediate representations and (ii) the mutual information between the model parameters and the training dataset. This characterization provides theoretical guidance for designing effective training strategies in imitation learning, particularly in determining whether to freeze, fine-tune, or train large pretrained encoders (e.g., vision-language models or vision foundation models) from scratch to achieve better generalization. Furthermore, we demonstrate that high conditional entropy from input to output induces a flatter likelihood landscape, thereby reducing the upper bound on the generalization gap. In addition, it shortens the stochastic gradient descent (SGD) escape time from sharp local minima, which may increase the likelihood of reaching global optima under fixed optimization budgets. These insights explain why imitation learning often exhibits limited generalization and underscore the importance of not only scaling the diversity of input data but also enriching the variability of output labels conditioned on the same input.
Related papers
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Double Descent and Other Interpolation Phenomena in GANs [2.7007335372861974]
We study the generalization error as a function of latent space dimension in generative adversarial networks (GANs)
We develop a novel pseudo-supervised learning approach for GANs where the training utilizes pairs of fabricated (noise) inputs in conjunction with real output samples.
While our analysis focuses mostly on linear models, we also apply important insights for improving generalization of nonlinear, multilayer GANs.
arXiv Detail & Related papers (2021-06-07T23:07:57Z) - Measuring Generalization with Optimal Transport [111.29415509046886]
We develop margin-based generalization bounds, where the margins are normalized with optimal transport costs.
Our bounds robustly predict the generalization error, given training data and network parameters, on large scale datasets.
arXiv Detail & Related papers (2021-06-07T03:04:59Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
We introduce a set of simple yet effective data augmentation strategies dubbed cutoff.
cutoff relies on sampling consistency and thus adds little computational overhead.
cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
arXiv Detail & Related papers (2020-09-29T07:08:35Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Margin Maximization as Lossless Maximal Compression [0.3007949058551534]
In classification, functional margin correctly classifying many training examples as possible with maximal confidence has been known to construct models with good generalization guarantees.
This work gives an information-theoretic interpretation of a margin maximizing on a noiseless dataset as one that achieves maximal compression.
arXiv Detail & Related papers (2020-01-28T13:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.