Posterior Network: Uncertainty Estimation without OOD Samples via
Density-Based Pseudo-Counts
- URL: http://arxiv.org/abs/2006.09239v2
- Date: Thu, 22 Oct 2020 10:39:20 GMT
- Title: Posterior Network: Uncertainty Estimation without OOD Samples via
Density-Based Pseudo-Counts
- Authors: Bertrand Charpentier, Daniel Z\"ugner, Stephan G\"unnemann
- Abstract summary: Posterior Network (PostNet) predicts an individual closed-form posterior distribution over predicted probabilites for any input sample.
PostNet achieves state-of-the art results in OOD detection and in uncertainty calibration under dataset shifts.
- Score: 33.45069308137142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate estimation of aleatoric and epistemic uncertainty is crucial to
build safe and reliable systems. Traditional approaches, such as dropout and
ensemble methods, estimate uncertainty by sampling probability predictions from
different submodels, which leads to slow uncertainty estimation at inference
time. Recent works address this drawback by directly predicting parameters of
prior distributions over the probability predictions with a neural network.
While this approach has demonstrated accurate uncertainty estimation, it
requires defining arbitrary target parameters for in-distribution data and
makes the unrealistic assumption that out-of-distribution (OOD) data is known
at training time.
In this work we propose the Posterior Network (PostNet), which uses
Normalizing Flows to predict an individual closed-form posterior distribution
over predicted probabilites for any input sample. The posterior distributions
learned by PostNet accurately reflect uncertainty for in- and
out-of-distribution data -- without requiring access to OOD data at training
time. PostNet achieves state-of-the art results in OOD detection and in
uncertainty calibration under dataset shifts.
Related papers
- Tackling Missing Values in Probabilistic Wind Power Forecasting: A
Generative Approach [1.384633930654651]
We propose treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously.
Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.
arXiv Detail & Related papers (2024-03-06T11:38:08Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
We use a conditional Invertible Neural Network (cINN) to learn the underlying distribution of the data and then combine the uncertainty from this distribution with an arbitrary deterministic forecast.
Our approach enables the simple creation of probabilistic forecasts without complicated statistical loss functions or further assumptions.
arXiv Detail & Related papers (2023-02-03T15:11:39Z) - Looking at the posterior: accuracy and uncertainty of neural-network
predictions [0.0]
We show that prediction accuracy depends on both epistemic and aleatoric uncertainty.
We introduce a novel acquisition function that outperforms common uncertainty-based methods.
arXiv Detail & Related papers (2022-11-26T16:13:32Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.