論文の概要: Modeling Graph Structure via Relative Position for Text Generation from
Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2006.09242v3
- Date: Tue, 27 Apr 2021 09:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 20:55:52.396534
- Title: Modeling Graph Structure via Relative Position for Text Generation from
Knowledge Graphs
- Title(参考訳): 知識グラフからのテキスト生成のための相対位置によるグラフ構造モデリング
- Authors: Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter, Iryna
Gurevych, Hinrich Sch\"utze
- Abstract要約: グラフ-テキスト生成のための新しいトランスフォーマーベースのエンコーダデコーダアーキテクチャであるGraformerを提案する。
新たなグラフの自己アテンションでは、ノードのエンコーディングは入力グラフのすべてのノードに依存します。
グレーフォーマーは、これらのノード-ノードの関係を異なるアテンションヘッドに対して異なる重み付けを学習し、入力グラフの異なる連結ビューを仮想的に学習する。
- 参考スコア(独自算出の注目度): 54.176285420428776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Graformer, a novel Transformer-based encoder-decoder architecture
for graph-to-text generation. With our novel graph self-attention, the encoding
of a node relies on all nodes in the input graph - not only direct neighbors -
facilitating the detection of global patterns. We represent the relation
between two nodes as the length of the shortest path between them. Graformer
learns to weight these node-node relations differently for different attention
heads, thus virtually learning differently connected views of the input graph.
We evaluate Graformer on two popular graph-to-text generation benchmarks,
AGENDA and WebNLG, where it achieves strong performance while using many fewer
parameters than other approaches.
- Abstract(参考訳): グラフ-テキスト生成のためのトランスフォーマーベースのエンコーダデコーダアーキテクチャであるGraformerを提案する。
新たに開発したグラフ自己照合により,ノードのエンコーディングは入力グラフのすべてのノードに依存する。
2つのノード間の関係を、それらの間の最短経路の長さとして表現する。
Graformerは、これらのノードとノードの関係を異なる注意頭に対して異なる重み付けを学習し、入力グラフの異なる連結ビューを仮想的に学習する。
我々は、AGENDAとWebNLGという2つの人気のあるグラフ・テキスト生成ベンチマーク上でGraformerを評価し、他の手法よりも少ないパラメータを使用しながら、高い性能を達成する。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Half-Hop: A graph upsampling approach for slowing down message passing [31.26080679115766]
メッセージパッシングニューラルネットワークにおける学習を改善するためのフレームワークを提案する。
我々のアプローチは基本的に、各エッジに"スローノード"を追加することで、元のグラフのエッジをサンプリングする。
提案手法は入力グラフのみを修正し,既存のモデルでプラグイン・アンド・プレイしやすくする。
論文 参考訳(メタデータ) (2023-08-17T22:24:15Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
GTGANは、グラフ制約のある住宅生成タスクにおいて、エンドツーエンドで効率的なグラフノード関係を学習する。
論文 参考訳(メタデータ) (2023-03-14T20:35:45Z) - Stage-wise Fine-tuning for Graph-to-Text Generation [25.379346921398326]
グラフからテキストへの生成は、構造化グラフエンコーダよりも優れたパフォーマンスを達成するための事前学習言語モデル(plm)の恩恵を受けている。
本研究では, ウィキペディアで最初に微調整を行い, グラフ・テキスト生成に適応する構造化グラフ・トゥ・テキストモデルを提案する。
論文 参考訳(メタデータ) (2021-05-17T17:15:29Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z) - Modeling Global and Local Node Contexts for Text Generation from
Knowledge Graphs [63.12058935995516]
最近のグラフ・トゥ・テキストモデルでは、グローバル・アグリゲーションまたはローカル・アグリゲーションを使用してグラフベースのデータからテキストを生成する。
本稿では,グローバルなノードコンテキストとローカルなノードコンテキストを組み合わせた入力グラフを符号化するニューラルモデルを提案する。
われわれのアプローチは、2つのグラフからテキストへのデータセットに大きな改善をもたらす。
論文 参考訳(メタデータ) (2020-01-29T18:24:14Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。