Learning to Learn with Feedback and Local Plasticity
- URL: http://arxiv.org/abs/2006.09549v1
- Date: Tue, 16 Jun 2020 22:49:07 GMT
- Title: Learning to Learn with Feedback and Local Plasticity
- Authors: Jack Lindsey, Ashok Litwin-Kumar
- Abstract summary: We employ meta-learning to discover networks that learn using feedback connections and local, biologically inspired learning rules.
Our experiments show that meta-trained networks effectively use feedback connections to perform online credit assignment in multi-layer architectures.
- Score: 9.51828574518325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interest in biologically inspired alternatives to backpropagation is driven
by the desire to both advance connections between deep learning and
neuroscience and address backpropagation's shortcomings on tasks such as
online, continual learning. However, local synaptic learning rules like those
employed by the brain have so far failed to match the performance of
backpropagation in deep networks. In this study, we employ meta-learning to
discover networks that learn using feedback connections and local, biologically
inspired learning rules. Importantly, the feedback connections are not tied to
the feedforward weights, avoiding biologically implausible weight transport.
Our experiments show that meta-trained networks effectively use feedback
connections to perform online credit assignment in multi-layer architectures.
Surprisingly, this approach matches or exceeds a state-of-the-art
gradient-based online meta-learning algorithm on regression and classification
tasks, excelling in particular at continual learning. Analysis of the weight
updates employed by these models reveals that they differ qualitatively from
gradient descent in a way that reduces interference between updates. Our
results suggest the existence of a class of biologically plausible learning
mechanisms that not only match gradient descent-based learning, but also
overcome its limitations.
Related papers
- Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning [32.122425860826525]
error backpropagation has faced criticism for its lack of biological plausibility.
We propose counter-current learning (CCL), a biologically plausible framework for credit assignment in neural networks.
Our work presents a direction for biologically inspired and plausible learning algorithms, offering an alternative mechanism of learning and adaptation in neural networks.
arXiv Detail & Related papers (2024-09-30T00:47:13Z) - Improving Performance in Continual Learning Tasks using Bio-Inspired
Architectures [4.2903672492917755]
We develop a biologically inspired lightweight neural network architecture that incorporates synaptic plasticity mechanisms and neuromodulation.
Our approach leads to superior online continual learning performance on Split-MNIST, Split-CIFAR-10, and Split-CIFAR-100 datasets.
We further demonstrate the effectiveness of our approach by integrating key design concepts into other backpropagation-based continual learning algorithms.
arXiv Detail & Related papers (2023-08-08T19:12:52Z) - Meta-Learning Biologically Plausible Plasticity Rules with Random
Feedback Pathways [0.0]
We develop a novel meta-plasticity approach to discover interpretable, biologically plausible plasticity rules.
Our results highlight the potential of meta-plasticity to discover effective, interpretable learning rules satisfying biological constraints.
arXiv Detail & Related papers (2022-10-28T21:40:56Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training.
We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations.
arXiv Detail & Related papers (2022-10-06T23:50:38Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
Current methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals.
We combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization.
We show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using a learning rule fully local in space and time.
arXiv Detail & Related papers (2022-04-14T22:06:21Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
We study the impact of "width" of the neural network architecture on catastrophic forgetting.
We study the learning dynamics of the network from various perspectives.
arXiv Detail & Related papers (2021-10-21T23:49:23Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
Networks [0.0]
Current methods in Reinforcement Learning (RL) only adjust to new interactions after reflection over a specified time interval.
Recent work addressing this by endowing artificial neural networks with neuromodulated plasticity have been shown to improve performance on simple RL tasks trained using backpropagation.
Here we study the problem of meta-learning in a challenging quadruped domain, where each leg of the quadruped has a chance of becoming unusable.
Results demonstrate that agents evolved using self-modifying plastic networks are more capable of adapting to complex meta-learning learning tasks, even outperforming the same network updated using gradient
arXiv Detail & Related papers (2020-05-22T02:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.