FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
- URL: http://arxiv.org/abs/2007.08505v1
- Date: Thu, 16 Jul 2020 17:55:31 GMT
- Title: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
- Authors: Chia-Wen Kuo and Chih-Yao Ma and Jia-Bin Huang and Zsolt Kira
- Abstract summary: We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
- Score: 64.32306537419498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent state-of-the-art semi-supervised learning (SSL) methods use a
combination of image-based transformations and consistency regularization as
core components. Such methods, however, are limited to simple transformations
such as traditional data augmentation or convex combinations of two images. In
this paper, we propose a novel learned feature-based refinement and
augmentation method that produces a varied set of complex transformations.
Importantly, these transformations also use information from both within-class
and across-class prototypical representations that we extract through
clustering. We use features already computed across iterations by storing them
in a memory bank, obviating the need for significant extra computation. These
transformations, combined with traditional image-based augmentation, are then
used as part of the consistency-based regularization loss. We demonstrate that
our method is comparable to current state of art for smaller datasets (CIFAR-10
and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and
mini-Imagenet where we achieve significant gains over the state of art
(\textit{e.g.,} absolute 17.44\% gain on mini-ImageNet). We further test our
method on DomainNet, demonstrating better robustness to out-of-domain unlabeled
data, and perform rigorous ablations and analysis to validate the method.
Related papers
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Patch-Wise Self-Supervised Visual Representation Learning: A Fine-Grained Approach [4.9204263448542465]
This study introduces an innovative, fine-grained dimension by integrating patch-level discrimination into self-supervised visual representation learning.
We employ a distinctive photometric patch-level augmentation, where each patch is individually augmented, independent from other patches within the same view.
We present a simple yet effective patch-matching algorithm to find the corresponding patches across the augmented views.
arXiv Detail & Related papers (2023-10-28T09:35:30Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Learning Image Deraining Transformer Network with Dynamic Dual
Self-Attention [46.11162082219387]
This paper proposes an effective image deraining Transformer with dynamic dual self-attention (DDSA)
Specifically, we only select the most useful similarity values based on top-k approximate calculation to achieve sparse attention.
In addition, we also develop a novel spatial-enhanced feed-forward network (SEFN) to further obtain a more accurate representation for achieving high-quality derained results.
arXiv Detail & Related papers (2023-08-15T13:59:47Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - Image Clustering via the Principle of Rate Reduction in the Age of Pretrained Models [37.574691902971296]
We propose a novel image clustering pipeline that leverages the powerful feature representation of large pre-trained models.
We show that our pipeline works well on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet-1k.
arXiv Detail & Related papers (2023-06-08T15:20:27Z) - Feature transforms for image data augmentation [74.12025519234153]
In image classification, many augmentation approaches utilize simple image manipulation algorithms.
In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches.
Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method.
arXiv Detail & Related papers (2022-01-24T14:12:29Z) - Deep Transformation-Invariant Clustering [24.23117820167443]
We present an approach that does not rely on abstract features but instead learns to predict image transformations.
This learning process naturally fits in the gradient-based training of K-means and Gaussian mixture model.
We demonstrate that our novel approach yields competitive and highly promising results on standard image clustering benchmarks.
arXiv Detail & Related papers (2020-06-19T13:43:08Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
We propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons.
Our method simultaneously clusters the data while enforcing consistency between cluster assignments.
Our method can be trained with large and small batches and can scale to unlimited amounts of data.
arXiv Detail & Related papers (2020-06-17T14:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.