論文の概要: Image Response Regression via Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2006.09911v4
- Date: Thu, 3 Mar 2022 02:26:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 20:27:43.099919
- Title: Image Response Regression via Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによる画像応答回帰
- Authors: Daiwei Zhang, Lexin Li, Chandra Sripada, Jian Kang
- Abstract要約: 本稿では,空間変動係数モデルの枠組みにおける新しい非パラメトリック手法を提案する。
提案手法の主な考え方は,画像ボクセルを空間的有効サンプルとして扱うことであり,医用画像研究の大部分を悩ませる限られたサンプルサイズの問題を軽減することにある。
本手法の有効性を,集中シミュレーションを用いて実証し,その利点を2つの機能的磁気共鳴イメージングデータセットで分析した。
- 参考スコア(独自算出の注目度): 4.646077947295938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Delineating the associations between images and a vector of covariates is of
central interest in medical imaging studies. To tackle this problem of image
response regression, we propose a novel nonparametric approach in the framework
of spatially varying coefficient models, where the spatially varying functions
are estimated through deep neural networks. Compared to existing solutions, the
proposed method explicitly accounts for spatial smoothness and subject
heterogeneity, has straightforward interpretations, and is highly flexible and
accurate in capturing complex association patterns. A key idea in our approach
is to treat the image voxels as the effective samples, which not only
alleviates the limited sample size issue that haunts the majority of medical
imaging studies, but also leads to more robust and reproducible results.
Focusing on a broad family of piecewise smooth functions, we establish the
estimation and selection consistency, and derive the asymptotic error bounds.
We demonstrate the efficacy of the method through intensive simulations, and
further illustrate its advantages with analyses of two functional magnetic
resonance imaging datasets.
- Abstract(参考訳): 画像と共変量ベクトルの関連性を説明することは、医用画像研究において中心的な関心事である。
画像応答回帰のこの問題に取り組むために,空間変化係数モデルの枠組みにおいて,深層ニューラルネットワークを用いて空間変化関数を推定する新しい非パラメトリック手法を提案する。
既存のソリューションと比較して,提案手法は空間的滑らかさと対象の不均一性を明確に説明し,簡単な解釈を持ち,複雑な関連パターンを捉える上で非常に柔軟かつ正確である。
提案手法の主な考え方は,画像ボクセルを有効試料として扱うことであり,医用画像研究の大部分を悩ませる限られたサンプルサイズの問題を軽減するだけでなく,より堅牢で再現可能な結果をもたらす。
区分的な滑らかな関数の広い族に着目し,推定と選択の一貫性を確立し,漸近的誤差境界を導出する。
本手法の有効性を集中シミュレーションにより実証し,その利点を2つの機能的磁気共鳴イメージングデータセットの解析により明らかにする。
関連論文リスト
- Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
本稿では,未決定の線形逆問題に対する空間変動正規化モデルの開発に焦点をあてる。
提案モデルの主な目的は,ディノベーションと細部・縁の保存のバランスを良くすることである。
畳み込みニューラルネットワークは、トレーニングにおいて弾性損失関数を用いて、基底真理像とその勾配を近似するように設計されている。
論文 参考訳(メタデータ) (2024-04-25T08:58:41Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
深層学習技術を用いた医用画像超解像(SR)再構成は、病変解析を強化し、診断効率と精度を向上させるために医師を支援する。
既存のディープラーニングベースのSR手法は、これらのモデルの表現能力を本質的に制限する畳み込みニューラルネットワーク(CNN)に依存している。
画像特徴抽出に複数の畳み込み演算子特徴抽出モジュール(MCO)を用いるAネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T06:14:22Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
断層撮影は一般的に逆問題である。
本稿では,トモグラフィ逆問題に対する複数の解を求める経験的サンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T20:27:31Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Representation Disentanglement for Multi-modal MR Analysis [15.498244253687337]
近年の研究では、マルチモーダルディープラーニング分析は、画像から解剖学的(形状)およびモダリティ(外観)表現を明示的に切り離すことから恩恵を受けることができることが示唆されている。
対象とモダリティをまたいだ表現の類似性関係を正規化するマージン損失を提案する。
頑健なトレーニングを実現するため,全てのモダリティの画像を符号化する単一モデルの設計のために条件付き畳み込みを導入する。
論文 参考訳(メタデータ) (2021-02-23T02:08:38Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。