論文の概要: Bayesian active learning for production, a systematic study and a
reusable library
- arxiv url: http://arxiv.org/abs/2006.09916v1
- Date: Wed, 17 Jun 2020 14:51:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 19:42:50.863160
- Title: Bayesian active learning for production, a systematic study and a
reusable library
- Title(参考訳): ベイズアクティブラーニングによる生産, 体系的研究, 再利用可能な図書館
- Authors: Parmida Atighehchian, Fr\'ed\'eric Branchaud-Charron, Alexandre
Lacoste
- Abstract要約: 本稿では,現在のアクティブラーニング技術の主な欠点について分析する。
実世界のデータセットの最も一般的な課題が深層能動学習プロセスに与える影響について,系統的研究を行った。
部分的不確実性サンプリングやより大きいクエリサイズといった,アクティブな学習ループを高速化する2つの手法を導出する。
- 参考スコア(独自算出の注目度): 85.32971950095742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning is able to reduce the amount of labelling effort by using a
machine learning model to query the user for specific inputs.
While there are many papers on new active learning techniques, these
techniques rarely satisfy the constraints of a real-world project. In this
paper, we analyse the main drawbacks of current active learning techniques and
we present approaches to alleviate them. We do a systematic study on the
effects of the most common issues of real-world datasets on the deep active
learning process: model convergence, annotation error, and dataset imbalance.
We derive two techniques that can speed up the active learning loop such as
partial uncertainty sampling and larger query size. Finally, we present our
open-source Bayesian active learning library, BaaL.
- Abstract(参考訳): アクティブラーニングは、機械学習モデルを使用してユーザに特定の入力を問い合わせることで、ラベル付けの労力を削減することができる。
新しいアクティブラーニング技術に関する多くの論文があるが、これらのテクニックが実際のプロジェクトの制約を満たすことは滅多にない。
本稿では,現在のアクティブラーニング技術の主な欠点を分析し,その軽減のためのアプローチを提案する。
我々は,実世界のデータセットの最も一般的な課題が,モデル収束,アノテーションエラー,データセットの不均衡といった深層アクティブラーニングプロセスに与える影響を体系的に研究する。
部分的不確実性サンプリングやクエリサイズなど,アクティブな学習ループを高速化する2つの手法を導出する。
最後に,オープンソースのベイズ能動的学習ライブラリBaaLを紹介する。
関連論文リスト
- regAL: Python Package for Active Learning of Regression Problems [0.0]
PythonパッケージregALでは、レグレッション問題に対するさまざまなアクティブな学習戦略を評価することができる。
我々は,レグレッション問題に対する様々なアクティブ学習戦略を評価することができるPythonパッケージregALを提案する。
論文 参考訳(メタデータ) (2024-10-23T14:34:36Z) - Compute-Efficient Active Learning [0.0]
アクティブラーニングは、ラベルなしデータセットから最も有益なサンプルを選択することでラベリングコストを削減することを目的としている。
従来のアクティブな学習プロセスは、拡張性と効率を阻害する広範な計算資源を必要とすることが多い。
本稿では,大規模データセット上での能動的学習に伴う計算負担を軽減するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T12:32:07Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
監視された機械学習は、モデルトレーニングのための良質なラベル付きデータの可用性に依存している。
アクティブな学習は機械学習のサブフィールドであり、ラベル付きデータを効率的に取得するのに役立つ。
論文 参考訳(メタデータ) (2023-10-30T14:29:53Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
視覚的質問応答のタスクにおいて、5つのモデルと4つのデータセットにまたがって、多種多様な能動的学習アプローチがランダム選択を上回りません。
アクティブな学習手法が好まれるが、モデルは学習に失敗する例の集まりである。
本研究では,アクティブ学習プールにおける集団外乱の減少に伴い,アクティブ学習サンプル効率が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-07-06T00:52:11Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Deep Bayesian Active Learning, A Brief Survey on Recent Advances [6.345523830122166]
アクティブラーニングは、ラベル付きデータの小さなサイズでモデルをトレーニングし始める。
ディープラーニングメソッドはモデルの不確実性を表現あるいは操作できない。
deep bayesian active learningフレームワークは、モデルにおける実践的な考察を提供する。
論文 参考訳(メタデータ) (2020-12-15T02:06:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。