論文の概要: GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
- arxiv url: http://arxiv.org/abs/2006.09963v3
- Date: Thu, 2 Jul 2020 06:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 20:27:25.598502
- Title: GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
- Title(参考訳): GCC: グラフニューラルネットワーク事前トレーニングのためのグラフコントラスト符号化
- Authors: Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming
Ding, Kuansan Wang, Jie Tang
- Abstract要約: グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
- 参考スコア(独自算出の注目度): 62.73470368851127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning has emerged as a powerful technique for
addressing real-world problems. Various downstream graph learning tasks have
benefited from its recent developments, such as node classification, similarity
search, and graph classification. However, prior arts on graph representation
learning focus on domain specific problems and train a dedicated model for each
graph dataset, which is usually non-transferable to out-of-domain data.
Inspired by the recent advances in pre-training from natural language
processing and computer vision, we design Graph Contrastive Coding (GCC) -- a
self-supervised graph neural network pre-training framework -- to capture the
universal network topological properties across multiple networks. We design
GCC's pre-training task as subgraph instance discrimination in and across
networks and leverage contrastive learning to empower graph neural networks to
learn the intrinsic and transferable structural representations. We conduct
extensive experiments on three graph learning tasks and ten graph datasets. The
results show that GCC pre-trained on a collection of diverse datasets can
achieve competitive or better performance to its task-specific and
trained-from-scratch counterparts. This suggests that the pre-training and
fine-tuning paradigm presents great potential for graph representation
learning.
- Abstract(参考訳): グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
ダウンストリームグラフ学習タスクは、ノード分類、類似性探索、グラフ分類などの最近の発展の恩恵を受けている。
しかしながら、グラフ表現学習における先行技術は、ドメイン固有の問題に焦点を当て、各グラフデータセットの専用モデルをトレーニングする。
自然言語処理とコンピュータビジョンからの事前学習の最近の進歩に触発されて、我々はグラフコントラストコーディング (gcc) -- 自己教師付きグラフニューラルネットワーク事前学習フレームワーク -- を設計、複数のネットワークにまたがるユニバーサルネットワークトポロジー特性をキャプチャする。
我々はgccの事前学習タスクを,ネットワーク内およびネットワーク間におけるサブグラフインスタンス識別として設計し,グラフニューラルネットワークに内在的かつ転送可能な構造表現を学習させるためのコントラスト学習を利用する。
3つのグラフ学習タスクと10のグラフデータセットに関する広範な実験を行う。
その結果,多種多様なデータセットの集合を事前学習したgccは,そのタスク固有かつスクラッチからトレーニングされたデータに対して,競争力やパフォーマンスの向上が期待できることがわかった。
このことは、事前学習と微調整のパラダイムがグラフ表現学習に大きな可能性を示唆している。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
グラフにおけるクロスタスクの一般性を学習するための新しいアプローチを提案する。
グラフ上のタスク空間を整列させるための基本的な学習インスタンスとしてタスクツリーを提案する。
その結果,グラフニューラルネットワークが多種多様なタスクツリーで事前訓練された場合,伝達可能な知識を取得することが示唆された。
論文 参考訳(メタデータ) (2024-12-21T02:07:43Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAG) は、さまざまなドメインにまたがる見えないグラフやタスクに一般化することができる。
本稿では,言語モデル (LM) とグラフニューラルネットワーク (GNN) をバックボーンネットワークとして,新しいケースドアーキテクチャを提案する。
本モデルの有効性を,未確認グラフの自己教師型表現学習,少数ショットインコンテキスト転送,ゼロショット転送で実証する。
論文 参考訳(メタデータ) (2024-02-21T09:06:31Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。