Multilevel Image Thresholding Using a Fully Informed Cuckoo Search
Algorithm
- URL: http://arxiv.org/abs/2006.09987v1
- Date: Sun, 31 May 2020 13:22:27 GMT
- Title: Multilevel Image Thresholding Using a Fully Informed Cuckoo Search
Algorithm
- Authors: Xiaotao Huang, Liang Shen, Chongyi Fan, Jiahua zhu and Sixian Chen
- Abstract summary: Population-based metaheuristic algorithms are widely used to improve the searching capacity.
In this paper, we improve a popular metaheuristic called cuckoo search using a ring topology based fully informed strategy.
- Score: 3.451622180162228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though effective in the segmentation, conventional multilevel thresholding
methods are computationally expensive as exhaustive search are used for optimal
thresholds to optimize the objective functions. To overcome this problem,
population-based metaheuristic algorithms are widely used to improve the
searching capacity. In this paper, we improve a popular metaheuristic called
cuckoo search using a ring topology based fully informed strategy. In this
strategy, each individual in the population learns from its neighborhoods to
improve the cooperation of the population and the learning efficiency. Best
solution or best fitness value can be obtained from the initial random
threshold values, whose quality is evaluated by the correlation function.
Experimental results have been examined on various numbers of thresholds. The
results demonstrate that the proposed algorithm is more accurate and efficient
than other four popular methods.
Related papers
- Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
We propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework.
It iteratively employs the frequent itemset recombination operator to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions.
In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds.
arXiv Detail & Related papers (2022-01-18T11:16:40Z) - Heuristic Search for Rank Aggregation with Application to Label Ranking [16.275063634853584]
We propose an effective hybrid evolutionary ranking algorithm to solve the rank aggregation problem.
The algorithm features a semantic crossover based on concordant pairs and a late acceptance local search reinforced by an efficient incremental evaluation technique.
Experiments are conducted to assess the algorithm, indicating a highly competitive performance on benchmark instances.
arXiv Detail & Related papers (2022-01-11T11:43:17Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
In rank aggregation problems, users exhibit various accuracy levels when comparing pairs of items.
We propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons.
We prove that our algorithm can return the true ranking of items with high probability.
arXiv Detail & Related papers (2021-10-08T13:51:55Z) - A Pragmatic Look at Deep Imitation Learning [0.3626013617212666]
We re-implement 6 different adversarial imitation learning algorithms.
We evaluate them on a widely-used expert trajectory dataset.
GAIL consistently performs well across a range of sample sizes.
arXiv Detail & Related papers (2021-08-04T06:33:10Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.