Benchmarking Simulation-Based Inference
- URL: http://arxiv.org/abs/2101.04653v1
- Date: Tue, 12 Jan 2021 18:31:22 GMT
- Title: Benchmarking Simulation-Based Inference
- Authors: Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J.
Gon\c{c}alves, Jakob H. Macke
- Abstract summary: Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
- Score: 5.3898004059026325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in probabilistic modelling have led to a large number of
simulation-based inference algorithms which do not require numerical evaluation
of likelihoods. However, a public benchmark with appropriate performance
metrics for such 'likelihood-free' algorithms has been lacking. This has made
it difficult to compare algorithms and identify their strengths and weaknesses.
We set out to fill this gap: We provide a benchmark with inference tasks and
suitable performance metrics, with an initial selection of algorithms including
recent approaches employing neural networks and classical Approximate Bayesian
Computation methods. We found that the choice of performance metric is
critical, that even state-of-the-art algorithms have substantial room for
improvement, and that sequential estimation improves sample efficiency. Neural
network-based approaches generally exhibit better performance, but there is no
uniformly best algorithm. We provide practical advice and highlight the
potential of the benchmark to diagnose problems and improve algorithms. The
results can be explored interactively on a companion website. All code is open
source, making it possible to contribute further benchmark tasks and inference
algorithms.
Related papers
- A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms using the Principles of Severity [9.310464457958844]
We provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems.
The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure.
arXiv Detail & Related papers (2024-05-31T19:35:34Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
arXiv Detail & Related papers (2020-01-31T22:26:38Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.