論文の概要: Faster Secure Data Mining via Distributed Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2006.10091v1
- Date: Wed, 17 Jun 2020 18:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 21:38:19.587312
- Title: Faster Secure Data Mining via Distributed Homomorphic Encryption
- Title(参考訳): 分散同型暗号化による高速なセキュアデータマイニング
- Authors: Junyi Li, Heng Huang
- Abstract要約: ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
- 参考スコア(独自算出の注目度): 108.77460689459247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the rising privacy demand in data mining, Homomorphic Encryption (HE)
is receiving more and more attention recently for its capability to do
computations over the encrypted field. By using the HE technique, it is
possible to securely outsource model learning to the not fully trustful but
powerful public cloud computing environments. However, HE-based training scales
badly because of the high computation complexity. It is still an open problem
whether it is possible to apply HE to large-scale problems. In this paper, we
propose a novel general distributed HE-based data mining framework towards one
step of solving the scaling problem. The main idea of our approach is to use
the slightly more communication overhead in exchange of shallower computational
circuit in HE, so as to reduce the overall complexity. We verify the efficiency
and effectiveness of our new framework by testing over various data mining
algorithms and benchmark data-sets. For example, we successfully train a
logistic regression model to recognize the digit 3 and 8 within around 5
minutes, while a centralized counterpart needs almost 2 hours.
- Abstract(参考訳): データマイニングにおけるプライバシ要求の高まりにより、最近、暗号化されたフィールド上で計算を行う能力により、同型暗号化(HE)がますます注目を集めている。
HE技術を使用することで、モデル学習を信頼できないが強力なパブリッククラウド環境に安全にアウトソースすることが可能である。
しかし、計算の複雑さが高いため、heベースのトレーニングはひどくスケールする。
HEを大規模問題に適用できるかどうかはまだ未解決の問題である。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
我々のアプローチの主なアイデアは、he内のより浅い計算回路と引き換えに、より少ない通信オーバーヘッドを使用することで、全体的な複雑さを減らすことである。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
例えば、ロジスティック回帰モデルをトレーニングして、約5分以内に数字3と8を認識することに成功しました。
関連論文リスト
- A Novel Neural Network-Based Federated Learning System for Imbalanced
and Non-IID Data [2.9642661320713555]
ほとんどの機械学習アルゴリズムは、様々なソースから収集される大量のデータに大きく依存している。
この問題に対処するため、研究者らはフェデレーション学習を導入し、クライアントデータのプライバシーを確保することによって予測モデルを学習した。
本研究では,ニューラルネットワークに基づくフェデレーション学習システムを提案する。
論文 参考訳(メタデータ) (2023-11-16T17:14:07Z) - Hyperdimensional Computing as a Rescue for Efficient Privacy-Preserving
Machine Learning-as-a-Service [9.773163665697057]
ホモモルフィック暗号化(HE)はこの逆問題に対処するための有望な手法である。
HEを使用すると、サービスプロバイダは、暗号化されたデータをクエリとして取り、それを復号することなくモデルを実行することができる。
我々は、超次元コンピューティングが、暗号化データによるプライバシー保護機械学習の救いになることを示した。
論文 参考訳(メタデータ) (2023-08-17T00:25:17Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Dash: Accelerating Distributed Private Convolutional Neural Network Inference with Arithmetic Garbled Circuits [6.912820984005411]
私たちは、悪質な攻撃者に対してセキュアな、高速で分散的なプライベート畳み込みニューラルネットワーク推論スキームであるDashを紹介します。
算術ガーブリングガジェット [BMR16] と派手なガーブリングガジェット [BCM+19] をベースとしており、Dashは算術ガーブラード回路を純粋にベースとしている。
論文 参考訳(メタデータ) (2023-02-13T13:48:08Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
我々はスケッチを利用した新しい分散Adam型アルゴリズムのクラス(例:SketchedAMSGrad)を提案する。
我々の新しいアルゴリズムは、反復毎に$O(frac1sqrtnT + frac1(k/d)2 T)$の高速収束率を$O(k log(d))$の通信コストで達成する。
論文 参考訳(メタデータ) (2022-10-14T01:42:05Z) - CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph
Convolutional Network Inference [12.03953896181613]
クラウドベースのグラフ畳み込みネットワーク(GCN)は、多くのプライバシに敏感なアプリケーションで大きな成功と可能性を示している。
クラウド上での推論精度とパフォーマンスは高いが、GCN推論におけるデータのプライバシの維持については、まだ明らかにされていない。
本稿では,この手法を最初に試行し,同型暗号(HE)に基づくGCN推論フレームワークであるtextitCryptoGCN$-を開発する。
論文 参考訳(メタデータ) (2022-09-24T02:20:54Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing [55.012801269326594]
ビザンチンの堅牢な分散学習では、中央サーバは、複数のワーカーに分散したデータよりも、機械学習モデルを訓練したい。
これらの労働者のごく一部は、所定のアルゴリズムから逸脱し、任意のメッセージを送ることができる。
本稿では,既存のロバストなアルゴリズムを無視可能な計算コストでヘテロジニアスなデータセットに適応させる,シンプルなバケット方式を提案する。
論文 参考訳(メタデータ) (2020-06-16T17:58:53Z) - Privacy-Preserving Gaussian Process Regression -- A Modular Approach to
the Application of Homomorphic Encryption [4.1499725848998965]
ホモモルフィック暗号化(FHE)は、データを暗号化しながら計算することができる。
ガウス過程回帰のような一般的な機械学習アルゴリズムは、FHEにはあまり適していない。
保護を必要とするワークフローのセンシティブなステップのみにFHEを適用するモジュラーアプローチは、あるパーティがデータに対して予測できることを示している。
論文 参考訳(メタデータ) (2020-01-28T11:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。