Towards Recurrent Autoregressive Flow Models
- URL: http://arxiv.org/abs/2006.10096v1
- Date: Wed, 17 Jun 2020 18:38:36 GMT
- Title: Towards Recurrent Autoregressive Flow Models
- Authors: John Mern and Peter Morales and Mykel J. Kochenderfer
- Abstract summary: We present Recurrent Autoregressive Flows as a method toward general process modeling with normalizing flows.
The proposed method defines a conditional distribution for each variable in a sequential process by conditioning the parameters of a normalizing flow with recurrent neural connections.
We demonstrate the effectiveness of this class of models through a series of experiments in which models are trained on three complex processes.
- Score: 39.25035894474609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic processes generated by non-stationary distributions are difficult
to represent with conventional models such as Gaussian processes. This work
presents Recurrent Autoregressive Flows as a method toward general stochastic
process modeling with normalizing flows. The proposed method defines a
conditional distribution for each variable in a sequential process by
conditioning the parameters of a normalizing flow with recurrent neural
connections. Complex conditional relationships are learned through the
recurrent network parameters. In this work, we present an initial design for a
recurrent flow cell and a method to train the model to match observed empirical
distributions. We demonstrate the effectiveness of this class of models through
a series of experiments in which models are trained on three complex stochastic
processes. We highlight the shortcomings of our current formulation and suggest
some potential solutions.
Related papers
- Flow Map Matching [15.520853806024943]
Flow map matching is an algorithm that learns the two-time flow map of an underlying ordinary differential equation.
We show that flow map matching leads to high-quality samples with significantly reduced sampling cost compared to diffusion or interpolant methods.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
We propose a simple approach using surjective normalizing flows to identify out-of-distribution data sets in deep neural network models.
We show that our method can reliably discern out-of-distribution data from in-distribution data.
arXiv Detail & Related papers (2023-11-01T09:08:35Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
We propose a framework for approximate inference that estimates the target conditional as a composition of two flow models.
Our method is evaluated on a variety of inverse problems and is shown to produce high-quality samples with uncertainty.
arXiv Detail & Related papers (2020-02-26T19:01:11Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.