Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows
- URL: http://arxiv.org/abs/2311.00377v1
- Date: Wed, 1 Nov 2023 09:08:35 GMT
- Title: Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows
- Authors: Simon Dirmeier and Ye Hong and Yanan Xin and Fernando Perez-Cruz
- Abstract summary: We propose a simple approach using surjective normalizing flows to identify out-of-distribution data sets in deep neural network models.
We show that our method can reliably discern out-of-distribution data from in-distribution data.
- Score: 46.51077762143714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable quantification of epistemic and aleatoric uncertainty is of crucial
importance in applications where models are trained in one environment but
applied to multiple different environments, often seen in real-world
applications for example, in climate science or mobility analysis. We propose a
simple approach using surjective normalizing flows to identify
out-of-distribution data sets in deep neural network models that can be
computed in a single forward pass. The method builds on recent developments in
deep uncertainty quantification and generative modeling with normalizing flows.
We apply our method to a synthetic data set that has been simulated using a
mechanistic model from the mobility literature and several data sets simulated
from interventional distributions induced by soft and atomic interventions on
that model, and demonstrate that our method can reliably discern
out-of-distribution data from in-distribution data. We compare the surjective
flow model to a Dirichlet process mixture model and a bijective flow and find
that the surjections are a crucial component to reliably distinguish
in-distribution from out-of-distribution data.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
We introduce a novel generative model for the representation of joint probability distributions of a possibly large number of discrete random variables.
The embedding of the flow via the Segre map in the meta-simplex of all discrete joint distributions ensures that any target distribution can be represented in principle.
Our approach has strong motivation from first principles of modeling coupled discrete variables.
arXiv Detail & Related papers (2024-06-06T21:58:33Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise.
The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function.
Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set.
arXiv Detail & Related papers (2024-03-31T00:09:58Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Bayesian Flow Networks [4.585102332532472]
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference.
Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models.
BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
arXiv Detail & Related papers (2023-08-14T09:56:35Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.