Head2Head++: Deep Facial Attributes Re-Targeting
- URL: http://arxiv.org/abs/2006.10199v2
- Date: Tue, 28 Sep 2021 15:01:59 GMT
- Title: Head2Head++: Deep Facial Attributes Re-Targeting
- Authors: Michail Christos Doukas, Mohammad Rami Koujan, Viktoriia Sharmanska,
Anastasios Roussos
- Abstract summary: We leverage the 3D geometry of faces and Generative Adversarial Networks (GANs) to design a novel deep learning architecture for the task of facial and head reenactment.
We manage to capture the complex non-rigid facial motion from the driving monocular performances and synthesise temporally consistent videos.
Our system performs end-to-end reenactment in nearly real-time speed (18 fps)
- Score: 6.230979482947681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial video re-targeting is a challenging problem aiming to modify the
facial attributes of a target subject in a seamless manner by a driving
monocular sequence. We leverage the 3D geometry of faces and Generative
Adversarial Networks (GANs) to design a novel deep learning architecture for
the task of facial and head reenactment. Our method is different to purely 3D
model-based approaches, or recent image-based methods that use Deep
Convolutional Neural Networks (DCNNs) to generate individual frames. We manage
to capture the complex non-rigid facial motion from the driving monocular
performances and synthesise temporally consistent videos, with the aid of a
sequential Generator and an ad-hoc Dynamics Discriminator network. We conduct a
comprehensive set of quantitative and qualitative tests and demonstrate
experimentally that our proposed method can successfully transfer facial
expressions, head pose and eye gaze from a source video to a target subject, in
a photo-realistic and faithful fashion, better than other state-of-the-art
methods. Most importantly, our system performs end-to-end reenactment in nearly
real-time speed (18 fps).
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - G3FA: Geometry-guided GAN for Face Animation [14.488117084637631]
We introduce Geometry-guided GAN for Face Animation (G3FA) to tackle this limitation.
Our novel approach empowers the face animation model to incorporate 3D information using only 2D images.
In our face reenactment model, we leverage 2D motion warping to capture motion dynamics.
arXiv Detail & Related papers (2024-08-23T13:13:24Z) - High-fidelity Facial Avatar Reconstruction from Monocular Video with
Generative Priors [29.293166730794606]
We propose a new method for NeRF-based facial avatar reconstruction that utilizes 3D-aware generative prior.
Compared with existing works, we obtain superior novel view synthesis results and faithfully face reenactment performance.
arXiv Detail & Related papers (2022-11-28T04:49:46Z) - Dynamic Neural Portraits [58.480811535222834]
We present Dynamic Neural Portraits, a novel approach to the problem of full-head reenactment.
Our method generates photo-realistic video portraits by explicitly controlling head pose, facial expressions and eye gaze.
Our experiments demonstrate that the proposed method is 270 times faster than recent NeRF-based reenactment methods.
arXiv Detail & Related papers (2022-11-25T10:06:14Z) - Video2StyleGAN: Encoding Video in Latent Space for Manipulation [63.03250800510085]
We propose a novel network to encode face videos into the latent space of StyleGAN for semantic face video manipulation.
Our approach can significantly outperform existing single image methods, while achieving real-time (66 fps) speed.
arXiv Detail & Related papers (2022-06-27T06:48:15Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
We present a versatile model, FaceAnime, for various video generation tasks from still images.
Our model is versatile for various AR/VR and entertainment applications, such as face video and face video prediction.
arXiv Detail & Related papers (2021-05-31T02:30:11Z) - Head2Head: Video-based Neural Head Synthesis [50.32988828989691]
We propose a novel machine learning architecture for facial reenactment.
We show that the proposed method can transfer facial expressions, pose and gaze of a source actor to a target video in a photo-realistic fashion more accurately than state-of-the-art methods.
arXiv Detail & Related papers (2020-05-22T00:44:43Z) - DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation [56.56575063461169]
DeepFaceFlow is a robust, fast, and highly-accurate framework for the estimation of 3D non-rigid facial flow.
Our framework was trained and tested on two very large-scale facial video datasets.
Given registered pairs of images, our framework generates 3D flow maps at 60 fps.
arXiv Detail & Related papers (2020-05-14T23:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.