The Recurrent Neural Tangent Kernel
- URL: http://arxiv.org/abs/2006.10246v4
- Date: Tue, 15 Jun 2021 00:43:41 GMT
- Title: The Recurrent Neural Tangent Kernel
- Authors: Sina Alemohammad, Zichao Wang, Randall Balestriero, Richard Baraniuk
- Abstract summary: We introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs.
A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels.
- Score: 11.591070761599328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of deep neural networks (DNNs) in the infinite-width limit, via the
so-called neural tangent kernel (NTK) approach, has provided new insights into
the dynamics of learning, generalization, and the impact of initialization. One
key DNN architecture remains to be kernelized, namely, the recurrent neural
network (RNN). In this paper we introduce and study the Recurrent Neural
Tangent Kernel (RNTK), which provides new insights into the behavior of
overparametrized RNNs. A key property of the RNTK should greatly benefit
practitioners is its ability to compare inputs of different length. To this
end, we characterize how the RNTK weights different time steps to form its
output under different initialization parameters and nonlinearity choices. A
synthetic and 56 real-world data experiments demonstrate that the RNTK offers
significant performance gains over other kernels, including standard NTKs,
across a wide array of data sets.
Related papers
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - A Unified Kernel for Neural Network Learning [4.0759204898334715]
We present the Unified Neural Kernel (UNK), which characterizes the learning dynamics of neural networks with gradient descents.
UNK maintains the limiting properties of both NNGP and NTK, exhibiting behaviors akin to NTK with a finite learning step.
We also theoretically characterize the uniform tightness and learning convergence of the UNK kernel.
arXiv Detail & Related papers (2024-03-26T07:55:45Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
We study the performance of the Conjugate Kernel (CK), an efficient approximation to the Neural Tangent Kernel (NTK)
We show that the CK performance is only marginally worse than that of the NTK and, in certain cases, is shown to be superior.
In addition to providing a theoretical grounding for using CKs instead of NTKs, our framework suggests a recipe for improving DNN accuracy inexpensively.
arXiv Detail & Related papers (2023-10-28T06:41:47Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Neural Tangent Kernel Analysis of Deep Narrow Neural Networks [11.623483126242478]
We present the first trainability guarantee of infinitely deep but narrow neural networks.
We then extend the analysis to an infinitely deep convolutional neural network (CNN) and perform brief experiments.
arXiv Detail & Related papers (2022-02-07T07:27:02Z) - Weighted Neural Tangent Kernel: A Generalized and Improved
Network-Induced Kernel [20.84988773171639]
The Neural Tangent Kernel (NTK) has recently attracted intense study, as it describes the evolution of an over- parameterized Neural Network (NN) trained by gradient descent.
We introduce the Weighted Neural Tangent Kernel (WNTK), a generalized and improved tool, which can capture an over- parameterized NN's training dynamics under different gradients.
With the proposed weight update algorithm, both empirical and analytical WNTKs outperform the corresponding NTKs in numerical experiments.
arXiv Detail & Related papers (2021-03-22T03:16:20Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.