Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK
- URL: http://arxiv.org/abs/2301.00327v3
- Date: Tue, 29 Oct 2024 18:45:06 GMT
- Title: Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK
- Authors: Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Yingbin Liang, Zhangyang Wang,
- Abstract summary: We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
- Score: 86.45209429863858
- License:
- Abstract: We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime, where the networks' biases are initialized to some constant rather than zero. We prove that under such initialization, the neural network will have sparse activation throughout the entire training process, which enables fast training procedures via some sophisticated computational methods. With such initialization, we show that the neural networks possess a different limiting kernel which we call \textit{bias-generalized NTK}, and we study various properties of the neural networks with this new kernel. We first characterize the gradient descent dynamics. In particular, we show that the network in this case can achieve as fast convergence as the dense network, as opposed to the previous work suggesting that the sparse networks converge slower. In addition, our result improves the previous required width to ensure convergence. Secondly, we study the networks' generalization: we show a width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and generalization bound. To our knowledge, this is the first sparsity-dependent generalization result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new kernel. We identify a data-dependent region where we can derive a much sharper lower bound on the NTK's smallest eigenvalue than the worst-case bound previously known. This can lead to improvement in the generalization bound.
Related papers
- Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Limitations of the NTK for Understanding Generalization in Deep Learning [13.44676002603497]
We study NTKs through the lens of scaling laws, and demonstrate that they fall short of explaining important aspects of neural network generalization.
We show that even if the empirical NTK is allowed to be pre-trained on a constant number of samples, the kernel scaling does not catch up to the neural network scaling.
arXiv Detail & Related papers (2022-06-20T21:23:28Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.