論文の概要: Calibrated Reliable Regression using Maximum Mean Discrepancy
- arxiv url: http://arxiv.org/abs/2006.10255v2
- Date: Wed, 28 Oct 2020 03:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 10:07:32.987644
- Title: Calibrated Reliable Regression using Maximum Mean Discrepancy
- Title(参考訳): 最大平均差分法による校正信頼回帰
- Authors: Peng Cui, Wenbo Hu, Jun Zhu
- Abstract要約: 現代のディープニューラルネットワークは依然として信頼できない予測の不確実性を生んでいる。
本稿では、回帰タスクにおいて、よく校正された予測を得ることを懸念する。
非自明な実データセットに対する実験により,本手法は高い校正と鋭い予測間隔を生成できることが示された。
- 参考スコア(独自算出の注目度): 45.45024203912822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate quantification of uncertainty is crucial for real-world applications
of machine learning. However, modern deep neural networks still produce
unreliable predictive uncertainty, often yielding over-confident predictions.
In this paper, we are concerned with getting well-calibrated predictions in
regression tasks. We propose the calibrated regression method using the maximum
mean discrepancy by minimizing the kernel embedding measure. Theoretically, the
calibration error of our method asymptotically converges to zero when the
sample size is large enough. Experiments on non-trivial real datasets show that
our method can produce well-calibrated and sharp prediction intervals, which
outperforms the related state-of-the-art methods.
- Abstract(参考訳): 不確実性の正確な定量化は、機械学習の現実の応用に不可欠である。
しかし、現代のディープニューラルネットワークは信頼できない予測の不確実性を生み出し、しばしば過信な予測をもたらす。
本稿では,回帰タスクの予測を高度に調整することに関心を寄せる。
カーネル埋め込み測度を最小化することにより,最大平均偏差を用いた校正回帰法を提案する。
理論的には,本手法のキャリブレーション誤差は,試料サイズが十分大きいと漸近的にゼロに収束する。
非自明な実データセットの実験により,本手法は高い校正と鋭い予測間隔を生成できることを示す。
関連論文リスト
- Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - On Calibrated Model Uncertainty in Deep Learning [0.0]
損失校正されたベイジアンフレームワークの近似推論を,ドロップウェイトに基づくベイジアンニューラルネットワークに拡張する。
損失校正された不確実性から得られる決定は、簡単な代替手段よりも、診断性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-06-15T20:16:32Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
有限検証データセットを用いた予測モデルの誤校正を仮説検証問題として検討する。
誤校正の検出は、クラスの条件付き確率が予測の十分滑らかな関数である場合にのみ可能である。
我々は、$ell$-Expected Error(ECE)のデバイアスドプラグイン推定器に基づくキャリブレーションのためのミニマックステストであるT-Calを提案する。
論文 参考訳(メタデータ) (2022-03-03T16:58:54Z) - Recalibration of Aleatoric and Epistemic Regression Uncertainty in
Medical Imaging [2.126171264016785]
回帰における不確実性は、信頼できない予測の堅牢な拒絶や、分布外サンプルの検出を可能にする。
sigma $ scalingは予測の不確実性を確実に再調整することができる。
論文 参考訳(メタデータ) (2021-04-26T07:18:58Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - CRUDE: Calibrating Regression Uncertainty Distributions Empirically [4.552831400384914]
機械学習における校正された不確実性推定は、自動運転車、医療、天気予報、気候予報など多くの分野において重要である。
本稿では,特定の不確実性分布を仮定しない回帰設定のキャリブレーション手法を提案する: 回帰不確実性分布のキャリブレーション(CRUDE)。
CRUDEは、最先端技術よりも、一貫してシャープで、校正され、正確な不確実性の推定値を示す。
論文 参考訳(メタデータ) (2020-05-26T03:08:43Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。