SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
Interpolation
- URL: http://arxiv.org/abs/2006.10311v3
- Date: Mon, 22 Mar 2021 14:31:30 GMT
- Title: SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
Interpolation
- Authors: Robert M. Gower, Othmane Sebbouh, Nicolas Loizou
- Abstract summary: The Expected assumption of SGD (SGD) is being used routinely for non-artisan functions.
In this paper, we show a paradigms for convergence to a smooth non-linear setting.
We also provide theoretical guarantees for different step-size conditions.
- Score: 17.199023009789308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic Gradient Descent (SGD) is being used routinely for optimizing
non-convex functions. Yet, the standard convergence theory for SGD in the
smooth non-convex setting gives a slow sublinear convergence to a stationary
point. In this work, we provide several convergence theorems for SGD showing
convergence to a global minimum for non-convex problems satisfying some extra
structural assumptions. In particular, we focus on two large classes of
structured non-convex functions: (i) Quasar (Strongly) Convex functions (a
generalization of convex functions) and (ii) functions satisfying the
Polyak-Lojasiewicz condition (a generalization of strongly-convex functions).
Our analysis relies on an Expected Residual condition which we show is a
strictly weaker assumption than previously used growth conditions, expected
smoothness or bounded variance assumptions. We provide theoretical guarantees
for the convergence of SGD for different step-size selections including
constant, decreasing and the recently proposed stochastic Polyak step-size. In
addition, all of our analysis holds for the arbitrary sampling paradigm, and as
such, we give insights into the complexity of minibatching and determine an
optimal minibatch size. Finally, we show that for models that interpolate the
training data, we can dispense of our Expected Residual condition and give
state-of-the-art results in this setting.
Related papers
- Taming Nonconvex Stochastic Mirror Descent with General Bregman
Divergence [25.717501580080846]
This paper revisits the convergence of gradient Forward Mirror (SMD) in the contemporary non optimization setting.
For the training, we develop provably convergent algorithms for the problem of linear networks.
arXiv Detail & Related papers (2024-02-27T17:56:49Z) - Demystifying the Myths and Legends of Nonconvex Convergence of SGD [17.445810977264067]
gradient descent (SGD) and its variants are the main workhorses for solving large-scale optimization problems.
As our analyses, we addressed certain myths and legends related to the non convergence of the gradient.
arXiv Detail & Related papers (2023-10-19T17:58:59Z) - On Convergence of Incremental Gradient for Non-Convex Smooth Functions [63.51187646914962]
In machine learning and network optimization, algorithms like shuffle SGD are popular due to minimizing the number of misses and good cache.
This paper delves into the convergence properties SGD algorithms with arbitrary data ordering.
arXiv Detail & Related papers (2023-05-30T17:47:27Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - An improved convergence analysis for decentralized online stochastic
non-convex optimization [17.386715847732468]
In this paper, we show that a technique called GT-Loakjasiewics (GT-Loakjasiewics) satisfies the existing condition GT-Loakjasiewics (GT-Loakjasiewics) satisfies the current best convergence rates.
The results are not only immediately applicable but also the currently known best convergence rates.
arXiv Detail & Related papers (2020-08-10T15:29:13Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Better Theory for SGD in the Nonconvex World [2.6397379133308214]
Large-scale non optimization problems are ubiquitous in modern machine learning.
We perform experiments on the effects of a wide array of synthetic minibatch sizes on the Gradient Descent (SG) problem.
arXiv Detail & Related papers (2020-02-09T09:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.