Taming Nonconvex Stochastic Mirror Descent with General Bregman
Divergence
- URL: http://arxiv.org/abs/2402.17722v1
- Date: Tue, 27 Feb 2024 17:56:49 GMT
- Title: Taming Nonconvex Stochastic Mirror Descent with General Bregman
Divergence
- Authors: Ilyas Fatkhullin, Niao He
- Abstract summary: This paper revisits the convergence of gradient Forward Mirror (SMD) in the contemporary non optimization setting.
For the training, we develop provably convergent algorithms for the problem of linear networks.
- Score: 25.717501580080846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper revisits the convergence of Stochastic Mirror Descent (SMD) in the
contemporary nonconvex optimization setting. Existing results for batch-free
nonconvex SMD restrict the choice of the distance generating function (DGF) to
be differentiable with Lipschitz continuous gradients, thereby excluding
important setups such as Shannon entropy. In this work, we present a new
convergence analysis of nonconvex SMD supporting general DGF, that overcomes
the above limitations and relies solely on the standard assumptions. Moreover,
our convergence is established with respect to the Bregman Forward-Backward
envelope, which is a stronger measure than the commonly used squared norm of
gradient mapping. We further extend our results to guarantee high probability
convergence under sub-Gaussian noise and global convergence under the
generalized Bregman Proximal Polyak-{\L}ojasiewicz condition. Additionally, we
illustrate the advantages of our improved SMD theory in various nonconvex
machine learning tasks by harnessing nonsmooth DGFs. Notably, in the context of
nonconvex differentially private (DP) learning, our theory yields a simple
algorithm with a (nearly) dimension-independent utility bound. For the problem
of training linear neural networks, we develop provably convergent stochastic
algorithms.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Stochastic Methods in Variational Inequalities: Ergodicity, Bias and
Refinements [19.524063429548278]
Extragradient (SEG) and Gradient Descent Ascent (SGDA) are preeminent algorithms for min-max optimization and variational inequalities problems.
Our work endeavors to quantify and quantify the intrinsic structures intrinsic to these algorithms.
By recasting the constant step-size SEG/SGDA as time-homogeneous Markov Chains, we establish a first-of-its-kind Law of Large Numbers and a Central Limit Theorem.
arXiv Detail & Related papers (2023-06-28T18:50:07Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
In this paper, we investigate the theoretical properties of gradient descent (SGD) for statistical inference in the context of convex problems.
We propose two coferential procedures which may contain multiple error minima.
arXiv Detail & Related papers (2023-06-03T22:08:10Z) - Benign Underfitting of Stochastic Gradient Descent [72.38051710389732]
We study to what extent may gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit training data.
We analyze the closely related with-replacement SGD, for which an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate.
arXiv Detail & Related papers (2022-02-27T13:25:01Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
Interpolation [17.199023009789308]
The Expected assumption of SGD (SGD) is being used routinely for non-artisan functions.
In this paper, we show a paradigms for convergence to a smooth non-linear setting.
We also provide theoretical guarantees for different step-size conditions.
arXiv Detail & Related papers (2020-06-18T07:05:56Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
We provide sharp upper and lower bounds for several forms of gradient descent (SGD) on arbitrary Lipschitz nonsmooth convex losses.
Our bounds allow us to derive a new algorithm for differentially private nonsmooth convex optimization with optimal excess population risk.
arXiv Detail & Related papers (2020-06-12T02:45:21Z) - Better Theory for SGD in the Nonconvex World [2.6397379133308214]
Large-scale non optimization problems are ubiquitous in modern machine learning.
We perform experiments on the effects of a wide array of synthetic minibatch sizes on the Gradient Descent (SG) problem.
arXiv Detail & Related papers (2020-02-09T09:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.