Category-Specific CNN for Visual-aware CTR Prediction at JD.com
- URL: http://arxiv.org/abs/2006.10337v2
- Date: Fri, 19 Jun 2020 09:11:35 GMT
- Title: Category-Specific CNN for Visual-aware CTR Prediction at JD.com
- Authors: Hu Liu, Jing Lu, Hao Yang, Xiwei Zhao, Sulong Xu, Hao Peng, Zehua
Zhang, Wenjie Niu, Xiaokun Zhu, Yongjun Bao, Weipeng Yan
- Abstract summary: We propose Category-specific CNN (CSCNN) for Click Through Rate (CTR) prediction.
CSCNN early incorporates the category knowledge with a light-weighted attention- module on each convolutional layer.
This enables CSCNN to extract expressive category-specific visual patterns that benefit the CTR prediction.
- Score: 47.09978876513512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As one of the largest B2C e-commerce platforms in China, JD com also powers a
leading advertising system, serving millions of advertisers with fingertip
connection to hundreds of millions of customers. In our system, as well as most
e-commerce scenarios, ads are displayed with images.This makes visual-aware
Click Through Rate (CTR) prediction of crucial importance to both business
effectiveness and user experience. Existing algorithms usually extract visual
features using off-the-shelf Convolutional Neural Networks (CNNs) and late fuse
the visual and non-visual features for the finally predicted CTR. Despite being
extensively studied, this field still face two key challenges. First, although
encouraging progress has been made in offline studies, applying CNNs in real
systems remains non-trivial, due to the strict requirements for efficient
end-to-end training and low-latency online serving. Second, the off-the-shelf
CNNs and late fusion architectures are suboptimal. Specifically, off-the-shelf
CNNs were designed for classification thus never take categories as input
features. While in e-commerce, categories are precisely labeled and contain
abundant visual priors that will help the visual modeling. Unaware of the ad
category, these CNNs may extract some unnecessary category-unrelated features,
wasting CNN's limited expression ability. To overcome the two challenges, we
propose Category-specific CNN (CSCNN) specially for CTR prediction. CSCNN early
incorporates the category knowledge with a light-weighted attention-module on
each convolutional layer. This enables CSCNN to extract expressive
category-specific visual patterns that benefit the CTR prediction. Offline
experiments on benchmark and a 10 billion scale real production dataset from
JD, together with an Online A/B test show that CSCNN outperforms all compared
state-of-the-art algorithms.
Related papers
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Hybrid CNN Based Attention with Category Prior for User Image Behavior
Modeling [13.984055924772486]
We propose a hybrid CNN based attention module, unifying user's image behaviors and category prior, for CTR prediction.
Our approach achieves significant improvements in both online and offline experiments on a billion scale real serving dataset.
arXiv Detail & Related papers (2022-05-05T15:31:47Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
Vision Transformers (ViT) have emerged as a powerful alternative to convolutional networks (CNNs)
In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers.
With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains.
arXiv Detail & Related papers (2021-06-10T14:56:10Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.