Fusion of CNNs and statistical indicators to improve image
classification
- URL: http://arxiv.org/abs/2012.11049v1
- Date: Sun, 20 Dec 2020 23:24:31 GMT
- Title: Fusion of CNNs and statistical indicators to improve image
classification
- Authors: Javier Huertas-Tato, Alejandro Mart\'in, Julian Fierrez, David Camacho
- Abstract summary: Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
- Score: 65.51757376525798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Networks have dominated the field of computer vision for the
last ten years, exhibiting extremely powerful feature extraction capabilities
and outstanding classification performance. The main strategy to prolong this
trend relies on further upscaling networks in size. However, costs increase
rapidly while performance improvements may be marginal. We hypothesise that
adding heterogeneous sources of information may be more cost-effective to a CNN
than building a bigger network. In this paper, an ensemble method is proposed
for accurate image classification, fusing automatically detected features
through Convolutional Neural Network architectures with a set of manually
defined statistical indicators. Through a combination of the predictions of a
CNN and a secondary classifier trained on statistical features, better
classification performance can be cheaply achieved. We test multiple learning
algorithms and CNN architectures on a diverse number of datasets to validate
our proposal, making public all our code and data via GitHub. According to our
results, the inclusion of additional indicators and an ensemble classification
approach helps to increase the performance in 8 of 9 datasets, with a
remarkable increase of more than 10% precision in two of them.
Related papers
- Image edge enhancement for effective image classification [7.470763273994321]
We propose an edge enhancement-based method to enhance both accuracy and training speed of neural networks.
Our approach involves extracting high frequency features, such as edges, from images within the available dataset and fusing them with the original images.
arXiv Detail & Related papers (2024-01-13T10:01:34Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
We analyze the effect of convolutional kernel saturation in CNNs.
We propose a simple data augmentation technique to mitigate saturation and increase classification accuracy, by supplementing negative images to the training dataset.
Our results show that CNNs are indeed susceptible to convolutional kernel saturation and that supplementing negative images to the training dataset can offer a statistically significant increase in classification accuracies.
arXiv Detail & Related papers (2021-05-10T06:06:49Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.