論文の概要: On the Robustness of Active Learning
- arxiv url: http://arxiv.org/abs/2006.10370v1
- Date: Thu, 18 Jun 2020 09:07:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 13:14:46.602576
- Title: On the Robustness of Active Learning
- Title(参考訳): アクティブラーニングのロバスト性について
- Authors: Lukas Hahn and Lutz Roese-Koerner and Peet Cremer and Urs Zimmermann
and Ori Maoz and Anton Kummert
- Abstract要約: Active Learningは、機械学習アルゴリズムをトレーニングする上で最も有用なサンプルを特定する方法に関するものだ。
十分な注意とドメイン知識を持っていないことがよくあります。
そこで本研究では,Simpson の多様性指標に基づく新たな "Sum of Squared Logits" 手法を提案する。
- 参考スコア(独自算出の注目度): 0.7340017786387767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active Learning is concerned with the question of how to identify the most
useful samples for a Machine Learning algorithm to be trained with. When
applied correctly, it can be a very powerful tool to counteract the immense
data requirements of Artificial Neural Networks. However, we find that it is
often applied with not enough care and domain knowledge. As a consequence,
unrealistic hopes are raised and transfer of the experimental results from one
dataset to another becomes unnecessarily hard.
In this work we analyse the robustness of different Active Learning methods
with respect to classifier capacity, exchangeability and type, as well as
hyperparameters and falsely labelled data. Experiments reveal possible biases
towards the architecture used for sample selection, resulting in suboptimal
performance for other classifiers. We further propose the new "Sum of Squared
Logits" method based on the Simpson diversity index and investigate the effect
of using the confusion matrix for balancing in sample selection.
- Abstract(参考訳): Active Learningは、機械学習アルゴリズムをトレーニングする上で最も有用なサンプルを特定する方法に関する問題である。
正しく適用すれば、人工ニューラルネットワークの膨大なデータ要求に対処できる非常に強力なツールになり得る。
しかし、十分な注意とドメイン知識を持って適用されることがしばしばあります。
その結果、非現実的な期待が高まり、あるデータセットから別のデータセットへの実験結果の転送は必然的に困難になる。
本研究では,分類器容量,交換可能性,型,ハイパーパラメータ,誤ラベル付きデータなどに関して,さまざまなアクティブラーニング手法の堅牢性を分析する。
実験により、サンプル選択に使用されるアーキテクチャに対するバイアスが示され、その結果、他の分類器の準最適性能がもたらされる。
さらに,シンプソン多様性指数に基づく新しい「二乗ロジットの和」法を提案し,サンプル選択のバランスをとるために混乱行列を用いた効果について検討する。
関連論文リスト
- Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
ニューラルネットワークベースのアクティブラーニング(NAL)は、ニューラルネットワークを使用してサンプルの小さなサブセットを選択してトレーニングする、費用対効果の高いデータ選択技術である。
我々は、機能学習の観点から、両方のクエリ基準ベースのNALの成功について、統一的な説明を提供することにより、一歩前進させようとする。
論文 参考訳(メタデータ) (2024-06-06T10:38:01Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
監視された機械学習は、モデルトレーニングのための良質なラベル付きデータの可用性に依存している。
アクティブな学習は機械学習のサブフィールドであり、ラベル付きデータを効率的に取得するのに役立つ。
論文 参考訳(メタデータ) (2023-10-30T14:29:53Z) - Active Learning with Combinatorial Coverage [0.0]
アクティブな学習は、ラベル付けするデータを選択するプロセスを自動化する機械学習の実践的な分野である。
現在の手法はデータラベリングの負担を軽減するのに有効であるが、モデルに強く依存する。
これにより、サンプルデータの新しいモデルへの転送が不可能になり、サンプリングバイアスの問題も発生した。
本稿では,これらの課題を克服するために,カバレッジを活用した能動的学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T13:43:23Z) - Neural Active Learning on Heteroskedastic Distributions [29.01776999862397]
ヘテロスケダスティックデータセット上でのアクティブ学習アルゴリズムの破滅的な失敗を実証する。
本稿では,各データポイントにモデル差分スコアリング関数を組み込んで,ノイズの多いサンプルとサンプルクリーンなサンプルをフィルタするアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-02T07:30:19Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
本稿では,意思決定境界のホモロジーを回復するための能動的学習アルゴリズムを提案する。
我々のアルゴリズムは、ラベルを必要とするサンプルを逐次かつ適応的に選択する。
いくつかのデータセットの実験では、ホモロジーを回復する際のサンプルの複雑さの改善が示されている。
論文 参考訳(メタデータ) (2020-11-19T04:22:06Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。