論文の概要: Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning
- arxiv url: http://arxiv.org/abs/2006.10412v4
- Date: Wed, 9 Jun 2021 16:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 13:34:01.618563
- Title: Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning
- Title(参考訳): グラフベースの政策学習を用いたオープンアドホックチームワークを目指して
- Authors: Arrasy Rahman, Niklas H\"opner, Filippos Christianos, Stefano V.
Albrecht
- Abstract要約: 我々は、さまざまなチーム構成の下でエージェントモデルと共同アクション値モデルを学ぶために、グラフニューラルネットワーク上に構築する。
私たちは、我々のアプローチが、他のエージェントが学習者に与える影響をうまくモデル化し、動的なチーム構成にしっかりと適応するポリシーを導いたことを実証的に実証します。
- 参考スコア(独自算出の注目度): 11.480994804659908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ad hoc teamwork is the challenging problem of designing an autonomous agent
which can adapt quickly to collaborate with teammates without prior
coordination mechanisms, including joint training. Prior work in this area has
focused on closed teams in which the number of agents is fixed. In this work,
we consider open teams by allowing agents with different fixed policies to
enter and leave the environment without prior notification. Our solution builds
on graph neural networks to learn agent models and joint-action value models
under varying team compositions. We contribute a novel action-value computation
that integrates the agent model and joint-action value model to produce
action-value estimates. We empirically demonstrate that our approach
successfully models the effects other agents have on the learner, leading to
policies that robustly adapt to dynamic team compositions and significantly
outperform several alternative methods.
- Abstract(参考訳): アドホックなチームワークは、共同トレーニングを含む事前調整メカニズムなしでチームメイトと迅速に協力できる自律的なエージェントを設計する上で、難しい問題です。
この領域での以前の仕事は、エージェントの数を固定するクローズドチームに焦点を当てていた。
この作業では、異なる固定ポリシーを持つエージェントが事前の通知なしに環境に入り、立ち去ることを許可することで、オープンチームを検討する。
当社のソリューションは、さまざまなチーム構成の下でエージェントモデルと共同アクションバリューモデルを学ぶために、グラフニューラルネットワーク上に構築されています。
本稿では,エージェントモデルと協調作用値モデルを統合し,アクション値の推定を行う新しいアクション値計算を提案する。
我々は、我々のアプローチが他のエージェントが学習者に与える影響をうまくモデル化し、ダイナミックなチーム構成にしっかりと適応し、いくつかの代替手法を大幅に上回るポリシーを導いたことを実証的に実証した。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Knowledge-based Reasoning and Learning under Partial Observability in Ad
Hoc Teamwork [4.454557728745761]
本稿では,非単調な論理的推論に基づいてアドホックエージェントの動作を決定するアーキテクチャを提案する。
これは、他のエージェントの行動を予測するモデルのオンライン選択、適応、学習をサポートする。
単純なシナリオと複雑なシナリオの両方において、アーキテクチャのパフォーマンスが、最先端のデータ駆動ベースラインと同等か、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2023-06-01T15:21:27Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
機械学習モデルの敵攻撃に対する脆弱性は、近年、かなりの注目を集めている。
この研究は、個々のエージェントが様々な強度摂動空間に従属するグラフ上の敵の訓練を研究する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based
Policy Learning [11.998708550268978]
完全かつ部分的な可観測性の下でオープンなアドホックチームワークのためのソリューションのクラスを開発する。
我々のソリューションは、オープンなアドホックチームワークにおいて、完全かつ部分的に観察可能なケースで効率的なポリシーを学習できることを示します。
論文 参考訳(メタデータ) (2022-10-11T13:44:44Z) - Toward a Reasoning and Learning Architecture for Ad Hoc Teamwork [4.454557728745761]
先行調整のないエージェントチームにおけるコラボレーションを指すアドホックなチームワークのためのアーキテクチャを提案する。
私たちのアーキテクチャは、知識ベースとデータ駆動推論と学習の原則を組み合わせています。
シミュレーションされたマルチエージェントのコラボレーションドメインであるFort Attackを使って、アーキテクチャが予期せぬ変更への適応をサポートすることを実証しています。
論文 参考訳(メタデータ) (2022-08-24T13:57:33Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
本研究では,条件付きマルチエージェント模倣学習の課題について考察する。
本稿では,スケーラビリティとデータ不足の難しさに対処する新しい手法を提案する。
我々のモデルは,egoやパートナエージェント戦略よりも低ランクなサブスペースを学習し,サブスペースに補間することで,新たなパートナ戦略を推論し,適応する。
論文 参考訳(メタデータ) (2022-01-05T04:40:13Z) - Learning to Model Opponent Learning [11.61673411387596]
マルチエージェント強化学習(MARL: Multi-Agent Reinforcement Learning)は、一組の共存エージェントが相互とその環境と相互作用する設定を考える。
これは、通常、収束が定常環境の仮定に依存する値関数ベースのアルゴリズムにとって大きな課題となる。
我々は、モデルポンポント学習(LeMOL)と呼ばれる、対戦者の学習力学をモデル化するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2020-06-06T17:19:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。