DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
- URL: http://arxiv.org/abs/2006.10680v2
- Date: Thu, 3 Dec 2020 20:44:56 GMT
- Title: DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
- Authors: Zhe Dong, Andriy Mnih, George Tucker
- Abstract summary: We introduce the Augment-REINFORCE-Merge (ARM) estimator for training models with binary latent variables.
We show that ARM can be improved by analytically integrating out the randomness introduced by the augmentation process.
Our estimator, DisARM, is simple to implement and has the same computational cost as ARM.
- Score: 35.473848208376886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training models with discrete latent variables is challenging due to the
difficulty of estimating the gradients accurately. Much of the recent progress
has been achieved by taking advantage of continuous relaxations of the system,
which are not always available or even possible. The Augment-REINFORCE-Merge
(ARM) estimator provides an alternative that, instead of relaxation, uses
continuous augmentation. Applying antithetic sampling over the augmenting
variables yields a relatively low-variance and unbiased estimator applicable to
any model with binary latent variables. However, while antithetic sampling
reduces variance, the augmentation process increases variance. We show that ARM
can be improved by analytically integrating out the randomness introduced by
the augmentation process, guaranteeing substantial variance reduction. Our
estimator, DisARM, is simple to implement and has the same computational cost
as ARM. We evaluate DisARM on several generative modeling benchmarks and show
that it consistently outperforms ARM and a strong independent sample baseline
in terms of both variance and log-likelihood. Furthermore, we propose a local
version of DisARM designed for optimizing the multi-sample variational bound,
and show that it outperforms VIMCO, the current state-of-the-art method.
Related papers
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Gradient Estimation for Binary Latent Variables via Gradient Variance
Clipping [6.234350105794441]
gradient estimation is often necessary for fitting generative models with discrete latent variables.
DisARM and other estimators have potentially exploding variance near the boundary of the parameter space.
We propose a new gradient estimator textitbitflip-1 that has lower variance at the boundaries of the parameter space.
arXiv Detail & Related papers (2022-08-12T05:37:52Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
We propose a Gapped Straight-Through ( GST) estimator to reduce the variance without incurring resampling overhead.
This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax.
Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks.
arXiv Detail & Related papers (2022-06-15T01:46:05Z) - Double Control Variates for Gradient Estimation in Discrete Latent
Variable Models [32.33171301923846]
We introduce a variance reduction technique for score function estimators.
We show that our estimator can have lower variance compared to other state-of-the-art estimators.
arXiv Detail & Related papers (2021-11-09T18:02:42Z) - Learning generative models for valid knockoffs using novel
multivariate-rank based statistics [12.528602250193206]
Rank energy (RE) is derived using theoretical results characterizing the optimal maps in the Monge's Optimal Transport (OT) problem.
We propose a variant of the RE, dubbed as soft rank energy (sRE), and its kernel variant called as soft rank maximum mean discrepancy (sRMMD)
We then use sRMMD to generate deep knockoffs and show via extensive evaluation that it is a novel and effective method to produce valid knockoffs.
arXiv Detail & Related papers (2021-10-29T18:51:19Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables [60.799183326613395]
Antithetic REINFORCE-based Multi-Sample gradient estimator.
ARMS uses a copula to generate any number of mutually antithetic samples.
We evaluate ARMS on several datasets for training generative models, and our experimental results show that it outperforms competing methods.
arXiv Detail & Related papers (2021-05-28T23:19:54Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.