Multivariate Probabilistic Regression with Natural Gradient Boosting
- URL: http://arxiv.org/abs/2106.03823v1
- Date: Mon, 7 Jun 2021 17:44:49 GMT
- Title: Multivariate Probabilistic Regression with Natural Gradient Boosting
- Authors: Michael O'Malley, Adam M. Sykulski, Rick Lumpkin, Alejandro Schuler
- Abstract summary: We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
- Score: 63.58097881421937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many single-target regression problems require estimates of uncertainty along
with the point predictions. Probabilistic regression algorithms are well-suited
for these tasks. However, the options are much more limited when the prediction
target is multivariate and a joint measure of uncertainty is required. For
example, in predicting a 2D velocity vector a joint uncertainty would quantify
the probability of any vector in the plane, which would be more expressive than
two separate uncertainties on the x- and y- components. To enable joint
probabilistic regression, we propose a Natural Gradient Boosting (NGBoost)
approach based on nonparametrically modeling the conditional parameters of the
multivariate predictive distribution. Our method is robust, works
out-of-the-box without extensive tuning, is modular with respect to the assumed
target distribution, and performs competitively in comparison to existing
approaches. We demonstrate these claims in simulation and with a case study
predicting two-dimensional oceanographic velocity data. An implementation of
our method is available at https://github.com/stanfordmlgroup/ngboost.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.
We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.
This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Treeffuser: Probabilistic Predictions via Conditional Diffusions with Gradient-Boosted Trees [39.9546129327526]
Treeffuser is an easy-to-use method for probabilistic prediction on tabular data.
Treeffuser learns well-calibrated predictive distributions and can handle a wide range of regression tasks.
We demonstrate its versatility with an application to inventory allocation under uncertainty using sales data from Walmart.
arXiv Detail & Related papers (2024-06-11T18:59:24Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
We devise a method to transform a deterministic prediction into a probabilistic one.
We show that for doing so, one has to compromise between the accuracy and the reliability (calibration) of such a model.
We show several examples both with synthetic data, where the underlying hidden noise can accurately be recovered, and with large real-world datasets.
arXiv Detail & Related papers (2020-03-11T04:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.