Managing spectral properties and Schmidt mode content of squeezed vacuum
light using sum-frequency converter
- URL: http://arxiv.org/abs/2006.11093v1
- Date: Fri, 19 Jun 2020 11:55:58 GMT
- Title: Managing spectral properties and Schmidt mode content of squeezed vacuum
light using sum-frequency converter
- Authors: Vladislav Sukharnikov, Polina Sharapova, Olga Tikhonova
- Abstract summary: SFG-gate seeded by squeezed light is investigated in frequency Schmidt modes.
The effect of swapping between modes in the gate is found.
It allows to enhance squeezed light in a set of modes without loss of photon correlations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capabilities of quantum optical SFG-gate seeded by squeezed light are
investigated in the frame of frequency Schmidt modes. Methods to manage and
manipulate extensively the properties and mode content of squeezed light are
developed. Possibilities to block and select any certain Schmidt mode of
squeezed light with conservation of non-classical properties are demonstrated.
The significant phase sensitivity of the gate is shown and the ways to manage
the spectral distribution of the output light due to the phase effects and
variable coupling between modes in the gate are demonstrated. The effect of
swapping between modes in the gate is found. It allows to enhance squeezed
light in a set of modes without loss of photon correlations which is important
for further experiments and new applications.
Related papers
- Spectrum-to-position mapping via programmable spatial dispersion
implemented in an optical quantum memory [0.0]
We propose a protocol for spectrum-to-position conversion using spatial spin wave modulation technique in gradient echo quantum memory.
Results hold prospects for ultra-precise spectroscopy and present an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing.
arXiv Detail & Related papers (2023-08-03T14:41:44Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Spectral Properties of Transverse Laguerre-Gauss Modes in Parametric Down-Conversion [0.0]
We study the spectral dependence of the transverse Laguerre-Gauss modes in parametric downconversion.
We show how the spectral and spatial coupling can be harnessed to tune the purity of the well-known orbital angular momentum entanglement.
This work has implications for efficient collection of entangled photons in a transverse single mode, quantum imaging, and engineering pure states for high-dimensional quantum information processing.
arXiv Detail & Related papers (2022-09-05T11:37:31Z) - Angular dependency of spatial frequency modulation in diffusion media [7.481044907091694]
The angular deviation between the control and probe beams could be utilized as a degree of freedom to modulate the SF of the probe beam.
Our findings could be broadly applied to the fields of quantum information processing, all-optical image manipulation and imaging through diffusive media.
arXiv Detail & Related papers (2022-06-25T07:06:42Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Microscopy with heralded Fock states [0.0]
Spontaneous parametric down conversion (SPDC) is used as a source of a heralded single photon, which is quantum light prepared in a Fock state.
We present analytical formulas for the spatial mode tracking along with the heralded and non-heralded mode widths.
arXiv Detail & Related papers (2020-11-05T19:00:27Z) - Optical mode conversion in coupled Fabry-P\'erot resonators [0.0]
We introduce tunable impedance between coupled Fabry-P'erot resonators as a powerful tool for manipulation of the spatial and temporal properties of optical fields.
We experimentally demonstrate a NIR resonator whose finesse is tunable over a decade, and an optical mode converter with efficiency.
$!!75%$ for the first six Hermite-Gauss modes.
arXiv Detail & Related papers (2020-05-24T19:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.