Spectrally multimode integrated SU(1,1) interferometer
- URL: http://arxiv.org/abs/2012.03751v2
- Date: Wed, 26 May 2021 13:31:56 GMT
- Title: Spectrally multimode integrated SU(1,1) interferometer
- Authors: Alessandro Ferreri, Matteo Santandrea, Michael Stefszky, Kai H. Luo,
Harald Herrmann, Christine Silberhorn and Polina R. Sharapova
- Abstract summary: The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
- Score: 50.591267188664666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear SU(1,1) interferometers are fruitful and promising tools for
spectral engineering and precise measurements with phase sensitivity below the
classical bound. Such interferometers have been successfully realized in bulk
and fiber-based configurations. However, rapidly developing integrated
technologies provide higher efficiencies, smaller footprints, and pave the way
to quantum-enhanced on-chip interferometry. In this work, we theoretically
realised an integrated architecture of the multimode SU(1,1) interferometer
which can be applied to various integrated platforms. The presented
interferometer includes a polarization converter between two photon sources and
utilizes a continuous-wave (CW) pump. Based on the potassium titanyl phosphate
(KTP) platform, we show that this configuration results in almost perfect
destructive interference at the output and supersensitivity regions below the
classical limit. In addition, we discuss the fundamental difference between
single-mode and highly multimode SU(1,1) interferometers in the properties of
phase sensitivity and its limits. Finally, we explore how to improve the phase
sensitivity by filtering the output radiation and using different seeding
states in different modes with various detection strategies.
Related papers
- Improved phase sensitivity of an SU(1,1) interferometer based on the internal single-path local squeezing operation [0.0]
Internal single-path LSO scheme can enhance the phase sensitivity and the quantum Fisher information.
A larger squeezing parameter r leads to a better performance of the interferometer.
arXiv Detail & Related papers (2024-10-13T12:38:51Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Phase sensitivity of spatially broadband high-gain SU(1,1)
interferometers [0.0]
We present a theoretical description of spatially multimode SU (1,1) interferometers operating at low and high parametric gains.
Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region.
We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling.
arXiv Detail & Related papers (2023-07-04T13:51:31Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum-improved phase estimation with a displacement-assisted SU(1,1)
interferometer [0.49259062564301753]
Two local displacement operations (LDOs) inside an SU (1,1) interferometer are investigated in this paper.
We show that the estimation performance of DSU (1,1) interferometer is always better than that of SU (1,1) interferometer without the LDO.
Our findings would open an useful view for quantum-improved phase estimation of optical interferometers.
arXiv Detail & Related papers (2022-10-06T02:29:29Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Phase sensitivity approaching quantum Cramer-Rao bound in a modified
SU(1,1) interferometer [5.222964691649603]
We propose a new protocol based on a modified SU(1,1) interferometer, where the second nonlinear element is replaced by a beam splitter.
Our analysis suggests that the protocol can achieve sub-shot-noise-limited phase sensitivity and is robust against photon loss and background noise.
arXiv Detail & Related papers (2020-12-08T06:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.