Ultrafast Hole Spin Qubit with Gate-Tunable Spin-Orbit Switch
- URL: http://arxiv.org/abs/2006.11175v2
- Date: Wed, 3 Mar 2021 14:49:41 GMT
- Title: Ultrafast Hole Spin Qubit with Gate-Tunable Spin-Orbit Switch
- Authors: F. N. M. Froning, L. C. Camenzind, O. A. H. van der Molen, A. Li, E.
P. A. M. Bakkers, D. M. Zumb\"uhl, F. R. Braakman
- Abstract summary: We demonstrate ultrafast and universal quantum control of a hole spin qubit in a germanium/Silicon core/shell nanowire.
We show a large degree of electrical control over the Rabi frequency, Zeeman energy, and coherence time.
We identify an exceptionally strong but gate-tunable spin-orbit interaction as the underlying mechanism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge in quantum computation is the implementation of fast and
local qubit control while simultaneously maintaining coherence. Qubits based on
hole spins offer, through their strong spin-orbit interaction, a way to
implement fast quantum gates. Strikingly, for hole spins in one-dimensional
germanium and silicon devices, the spin-orbit interaction has been predicted to
be exceptionally strong yet highly tunable with gate voltages. Such electrical
control would make it possible to switch on demand between qubit idling and
manipulation modes. Here, we demonstrate ultrafast and universal quantum
control of a hole spin qubit in a germanium/silicon core/shell nanowire, with
Rabi frequencies of several hundreds of megahertz, corresponding to
spin-flipping times as short as ~1 ns - a new record for a single-spin qubit.
Next, we show a large degree of electrical control over the Rabi frequency,
Zeeman energy, and coherence time - thus implementing a switch toggling from a
rapid qubit manipulation mode to a more coherent idling mode. We identify an
exceptionally strong but gate-tunable spin-orbit interaction as the underlying
mechanism, with a short associated spin-orbit length that can be tuned over a
large range down to 3 nm for holes of heavy-hole mass. Our work demonstrates a
spin-orbit qubit switch and establishes hole spin qubits defined in
one-dimensional germanium/silicon nanostructures as a fast and highly tunable
platform for quantum computation.
Related papers
- Exchange-Only Spin-Orbit Qubits in Silicon and Germanium [0.0]
We propose an exchange-only spin-orbit qubit that utilizes spin-orbit interactions to implement qubit gates.
Our encoding is robust to significant local variability in hole spin properties.
Unlike current exchange-only qubits, which require complex multi-step sequences prone to leakage, our qubit design enables low-leakage two-qubit gates in a single step.
arXiv Detail & Related papers (2024-10-07T19:46:59Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling [42.60602838972598]
We introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence.
Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits.
arXiv Detail & Related papers (2023-06-28T16:24:11Z) - Direct manipulation of a superconducting spin qubit strongly coupled to
a transmon qubit [2.6810058988728342]
Superconducting spin qubits provide a promising alternative to semiconductor qubits.
We exploit a different qubit subspace using the spin-split doublet ground state of an electrostatically-defined quantum dot Josephson junction.
We embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit-qubit coupling.
arXiv Detail & Related papers (2022-08-22T07:09:24Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubits are frontrunner platforms for scalable quantum computers.
Fastest spin qubits to date are defined in long quantum dots with confinement directions.
In these systems the lifetime of the qubit is strongly limited by charge noise.
We propose a different, scalable qubit design, compatible with planar CMOS technology.
arXiv Detail & Related papers (2022-04-18T08:34:38Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Quantum control of the tin-vacancy spin qubit in diamond [41.74498230885008]
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices.
The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing.
We demonstrate multi-axis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive.
arXiv Detail & Related papers (2021-06-01T18:36:12Z) - Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low
power [0.0]
Hole spin qubits in planar Ge heterostructures are one of the frontrunner platforms for scalable quantum computers.
We propose a minimal design modification that enhances these interactions by orders of magnitude.
Our approach is based on an asymmetric potential that strongly squeezes the quantum dot in one direction.
arXiv Detail & Related papers (2021-03-30T23:46:07Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - A singlet triplet hole spin qubit in planar Ge [40.24757332810004]
GroupIV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology.
We demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge.
Results demonstrate that Ge hole singlet-triplet qubits are competing with state-of-the art GaAs and Si singlet-triplet qubits.
arXiv Detail & Related papers (2020-11-27T14:41:08Z) - Ultrafast coherent control of a hole spin qubit in a germanium quantum
dot [15.602040566536123]
We report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW)
A Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems.
Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo's criteria for a scalable quantum information processor.
arXiv Detail & Related papers (2020-06-22T15:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.