Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2006.11239v2
- Date: Wed, 16 Dec 2020 21:15:05 GMT
- Title: Denoising Diffusion Probabilistic Models
- Authors: Jonathan Ho, Ajay Jain, Pieter Abbeel
- Abstract summary: We present high quality image synthesis results using diffusion probabilistic models.
Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics.
- Score: 91.94962645056896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present high quality image synthesis results using diffusion probabilistic
models, a class of latent variable models inspired by considerations from
nonequilibrium thermodynamics. Our best results are obtained by training on a
weighted variational bound designed according to a novel connection between
diffusion probabilistic models and denoising score matching with Langevin
dynamics, and our models naturally admit a progressive lossy decompression
scheme that can be interpreted as a generalization of autoregressive decoding.
On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and
a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality
similar to ProgressiveGAN. Our implementation is available at
https://github.com/hojonathanho/diffusion
Related papers
- Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
Low-Dimensional Latents [26.17940552906923]
We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework.
We show that the proposed model can generate high-resolution samples and exhibits quality comparable to state-of-the-art models on standard benchmarks.
arXiv Detail & Related papers (2022-01-02T06:44:23Z) - Variational Diffusion Models [33.0719137062396]
We introduce a family of diffusion-based generative models that obtain state-of-the-art likelihoods on image density estimation benchmarks.
We show that the variational lower bound (VLB) simplifies to a remarkably short expression in terms of the signal-to-noise ratio of the diffused data.
arXiv Detail & Related papers (2021-07-01T17:43:20Z) - A Variational Perspective on Diffusion-Based Generative Models and Score
Matching [8.93483643820767]
We derive a variational framework for likelihood estimation for continuous-time generative diffusion.
We show that minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood of the plug-in reverse SDE.
arXiv Detail & Related papers (2021-06-05T05:50:36Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
We show that DDPMs can achieve competitive log-likelihoods while maintaining high sample quality.
We also find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes.
We show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable.
arXiv Detail & Related papers (2021-02-18T23:44:17Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.