A Variational Perspective on Diffusion-Based Generative Models and Score
Matching
- URL: http://arxiv.org/abs/2106.02808v1
- Date: Sat, 5 Jun 2021 05:50:36 GMT
- Title: A Variational Perspective on Diffusion-Based Generative Models and Score
Matching
- Authors: Chin-Wei Huang, Jae Hyun Lim, Aaron Courville
- Abstract summary: We derive a variational framework for likelihood estimation for continuous-time generative diffusion.
We show that minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood of the plug-in reverse SDE.
- Score: 8.93483643820767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete-time diffusion-based generative models and score matching methods
have shown promising results in modeling high-dimensional image data. Recently,
Song et al. (2021) show that diffusion processes that transform data into noise
can be reversed via learning the score function, i.e. the gradient of the
log-density of the perturbed data. They propose to plug the learned score
function into an inverse formula to define a generative diffusion process.
Despite the empirical success, a theoretical underpinning of this procedure is
still lacking. In this work, we approach the (continuous-time) generative
diffusion directly and derive a variational framework for likelihood
estimation, which includes continuous-time normalizing flows as a special case,
and can be seen as an infinitely deep variational autoencoder. Under this
framework, we show that minimizing the score-matching loss is equivalent to
maximizing a lower bound of the likelihood of the plug-in reverse SDE proposed
by Song et al. (2021), bridging the theoretical gap.
Related papers
- On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
We study the generation process as a correlation machine''
We show that low frequencies emerge earlier in the generation process, where the denoising basis vectors are more aligned to the true data with a rate depending on their eigenvalues.
This model allows us to show that the linear diffusion model converges in mean to the leading eigenvector of the underlying data, similarly to the prevalent power iteration method.
arXiv Detail & Related papers (2024-10-16T07:33:12Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance.
We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching.
arXiv Detail & Related papers (2022-11-07T14:34:27Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.