論文の概要: Optimal Statistical Hypothesis Testing for Social Choice
- arxiv url: http://arxiv.org/abs/2006.11362v1
- Date: Fri, 19 Jun 2020 20:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:07:06.357233
- Title: Optimal Statistical Hypothesis Testing for Social Choice
- Title(参考訳): 社会的選択のための最適統計的仮説テスト
- Authors: Lirong Xia
- Abstract要約: 我々は、よく受け入れられた統計的最適性 w.r.t である一様最強(UMP)試験を特徴付ける。
与えられた選択肢が、MallowsのモデルとCondorcetのモデルの下でそれぞれ勝者であるかどうかをテストする。
- 参考スコア(独自算出の注目度): 30.930621357547487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the following question in this paper: "What are the most robust
statistical methods for social choice?'' By leveraging the theory of uniformly
least favorable distributions in the Neyman-Pearson framework to finite models
and randomized tests, we characterize uniformly most powerful (UMP) tests,
which is a well-accepted statistical optimality w.r.t. robustness, for testing
whether a given alternative is the winner under Mallows' model and under
Condorcet's model, respectively.
- Abstract(参考訳): 有限モデルとランダム化テストに対して、ニーマン・ピアソン・フレームワークにおける一様で最も好ましくない分布の理論を利用して、「社会的選択のための最もロバストな統計的手法は何か」と題する質問に対して、我々は、mallowsモデルとcondorcetモデルの下で、ある選択肢がそれぞれ勝者であるかどうかをテストするために、よく受け入れられた統計最適性である、一様で最も強力な(ump)テストを特徴付ける。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
最適輸送の枠組みの下で, ほぼ優位性をスムーズなコストで評価する統計モデルを導入する。
また、Sinkhornアルゴリズムを用いた仮説テストフレームワークと効率的な実装を提案する。
複数のメトリクスで評価された大規模言語モデルの比較とベンチマークを行う方法について紹介する。
論文 参考訳(メタデータ) (2024-06-10T16:14:50Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Risk Aware Benchmarking of Large Language Models [36.95053112313244]
本稿では,統計的に有意な基礎モデルの社会技術的リスクを定量的に評価するための分布的枠組みを提案する。
本試験における2次統計は,計量学や数理ファイナンスでよく用いられる平均リスクモデルと関連していることを示す。
筆者らは,本フレームワークを用いて,命令からのドリフトや有害なコンテンツの出力に関連するリスクに関する,さまざまな大規模言語モデルを比較した。
論文 参考訳(メタデータ) (2023-10-11T02:08:37Z) - A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy
Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial
Networks [3.623570119514559]
そこで我々は,GoF(Goness-of-fit)テストのための半ベイズ非パラメトリック(セミBNP)手順を提案する。
提案手法は,最大平均誤差(MMD)測定のための新しいベイズ推定器を提案する。
提案手法は, 誤り仮説の誤認率と受理率を低くすることで, 頻繁なMDD法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-05T10:36:21Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
機械学習では、潜在的に多くの競合モデルから有望なモデルを選択し、その一般化性能を評価することが重要な課題である。
本稿では,評価セットの予測性能に基づいて選択された複数のモデルに対して,有効な低信頼境界を求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-24T13:28:43Z) - Learning to Increase the Power of Conditional Randomization Tests [8.883733362171032]
モデル-X条件ランダム化テストは、条件独立性テストのための一般的なフレームワークである。
本稿では,モデルXテストのパワー向上を目的とした新しいモデル適合方式を提案する。
論文 参考訳(メタデータ) (2022-07-03T12:29:25Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSEは状態推定器の密度である。
我々は、他の教師なしOOD検出器に対するDoSEの最先端性能を実証する。
論文 参考訳(メタデータ) (2020-06-16T16:06:25Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。