論文の概要: Sarcasm Detection in Tweets with BERT and GloVe Embeddings
- arxiv url: http://arxiv.org/abs/2006.11512v1
- Date: Sat, 20 Jun 2020 07:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 22:02:02.242831
- Title: Sarcasm Detection in Tweets with BERT and GloVe Embeddings
- Title(参考訳): BERTおよびGloVe埋め込みによるつぶやきのサーカスム検出
- Authors: Akshay Khatri, Pranav P and Dr. Anand Kumar M
- Abstract要約: 本稿では,BERTとGloVeの埋め込みを用いた機械学習手法を用いて,ツイートの皮肉を検出することを提案する。
提案モデルでは,ユーザが実際の応答に合わせて反応するコンテキストも利用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sarcasm is a form of communication in whichthe person states opposite of what
he actually means. It is ambiguous in nature. In this paper, we propose using
machine learning techniques with BERT and GloVe embeddings to detect sarcasm in
tweets. The dataset is preprocessed before extracting the embeddings. The
proposed model also uses the context in which the user is reacting to along
with his actual response.
- Abstract(参考訳): サルカズム(英: Sarcasm)とは、コミュニケーションの一種で、その人が実際に意味する意味とは逆である。
自然には曖昧である。
本稿では,BERTとGloVeを組み込んだ機械学習技術を用いて,ツイートの皮肉を検出することを提案する。
データセットは埋め込みを抽出する前に前処理される。
提案モデルでは,ユーザが実際の応答に合わせて反応するコンテキストも利用している。
関連論文リスト
- A Survey of Multimodal Sarcasm Detection [32.659528422756416]
サルカスム(Sarcasm)は、発音の文字通りの意味の反対を伝達するために用いられる修辞的な装置である。
これまでに,マルチモーダルサルカズム検出に関する総合的な調査が報告されている。
論文 参考訳(メタデータ) (2024-10-24T16:17:47Z) - An Evaluation of State-of-the-Art Large Language Models for Sarcasm
Detection [0.0]
サルカズム(英: Sarcasm)とは、彼が言いたいことの逆を意味する人による言葉の使用である。
NLPの最近の革新により、サルカズムを検出する可能性がさらに高まった。
論文 参考訳(メタデータ) (2023-10-07T14:45:43Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
本研究では,感情と感情の特徴を取り入れたモデルを提案する。
我々のアプローチは、ソーシャルネットワークプラットフォームとオンラインメディアの4つのデータセットに対して、最先端の結果を得た。
論文 参考訳(メタデータ) (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
本稿では,CMSG(Cross-modal sarcasm Generation)の新たな問題,すなわち,与えられた画像に対してサーカシックな記述を生成することについて検討する。
CMSGは、異なるモード間の相関だけでなく、サルカズムの特性をモデルが満たさなければならないため、困難である。
クロスモデルサルカズム生成のための抽出・生成・生成に基づくモジュール法(EGRM)を提案する。
論文 参考訳(メタデータ) (2022-11-20T14:38:24Z) - A Survey on Automated Sarcasm Detection on Twitter [0.0]
短いテキストメッセージは、特にTwitterのようなソーシャルメディアプラットフォーム上でのコミュニケーションにますます利用されている。
これらのメッセージの統一された皮肉は、文の意味を逆転させ、混乱とコミュニケーションの失敗につながる。
本稿では,文脈による検出,投稿履歴,機械学習モデルなど,現在使われているさまざまな手法について述べる。
論文 参考訳(メタデータ) (2022-02-05T08:38:38Z) - Bi-ISCA: Bidirectional Inter-Sentence Contextual Attention Mechanism for
Detecting Sarcasm in User Generated Noisy Short Text [8.36639545285691]
本稿では,双方向コンテキストアテンション機構(Bi-ISCA)を用いた最先端ディープラーニングアーキテクチャを提案する。
Bi-ISCAは、会話コンテキストのみを使用して、ユーザ生成した短いテキストの皮肉を検出するための文間依存関係をキャプチャする。
提案した深層学習モデルは,暗黙的,暗黙的,文脈的に不連続な単語や句を抽出し,サルカズムを誘発する能力を示す。
論文 参考訳(メタデータ) (2020-11-23T15:24:27Z) - On the Sentence Embeddings from Pre-trained Language Models [78.45172445684126]
本稿では,BERT埋め込みにおける意味情報が完全に活用されていないことを論じる。
BERTは常に文の非滑らかな異方性意味空間を誘導し,その意味的類似性を損なう。
本稿では,非教師対象で学習した正規化フローにより,異方性文の埋め込み分布を滑らかで等方性ガウス分布に変換することを提案する。
論文 参考訳(メタデータ) (2020-11-02T13:14:57Z) - Augmenting Data for Sarcasm Detection with Unlabeled Conversation
Context [55.898436183096614]
本稿では,会話コンテキストを利用して意味のあるサンプルを生成する新しいデータ拡張手法であるCRA(Contextual Response Augmentation)を提案する。
具体的には,提案手法を訓練し,FigLang2020の皮肉検出タスクに参加し,RedditとTwitterのデータセットで最高のパフォーマンスを実現した。
論文 参考訳(メタデータ) (2020-06-11T09:00:11Z) - Sarcasm Detection using Context Separators in Online Discourse [3.655021726150369]
サルカズム(Sarcasm)は、意味が暗黙的に伝えられる複雑な形態の言語である。
本研究では,RoBERTa_largeを用いて2つのデータセットの皮肉を検出する。
また,文脈単語埋め込みモデルの性能向上における文脈の重要性を主張する。
論文 参考訳(メタデータ) (2020-06-01T10:52:35Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
非皮肉な入力文に基づくサルカズム生成のための教師なしアプローチを提案する。
本手法では,サルカズムの2つの主要な特徴をインスタンス化するために,検索・編集の枠組みを用いる。
論文 参考訳(メタデータ) (2020-04-28T02:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。