One PLOT to Show Them All: Visualization of Efficient Sets in
Multi-Objective Landscapes
- URL: http://arxiv.org/abs/2006.11547v1
- Date: Sat, 20 Jun 2020 11:03:11 GMT
- Title: One PLOT to Show Them All: Visualization of Efficient Sets in
Multi-Objective Landscapes
- Authors: Lennart Sch\"apermeier and Christian Grimme and Pascal Kerschke
- Abstract summary: visualization techniques for continuous multi-objective optimization problems (MOPs) are rather scarce in research.
We propose a new and hybrid visualization technique, which combines the advantages of both approaches in order to represent local and global optimality.
This Plot of Landscapes with Optimal Trade-offs (PLOT) becomes one of the most informative multi-objective landscape visualization techniques available.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visualization techniques for the decision space of continuous multi-objective
optimization problems (MOPs) are rather scarce in research. For long, all
techniques focused on global optimality and even for the few available
landscape visualizations, e.g., cost landscapes, globality is the main
criterion. In contrast, the recently proposed gradient field heatmaps (GFHs)
emphasize the location and attraction basins of local efficient sets, but
ignore the relation of sets in terms of solution quality.
In this paper, we propose a new and hybrid visualization technique, which
combines the advantages of both approaches in order to represent local and
global optimality together within a single visualization. Therefore, we build
on the GFH approach but apply a new technique for approximating the location of
locally efficient points and using the divergence of the multi-objective
gradient vector field as a robust second-order condition. Then, the relative
dominance relationship of the determined locally efficient points is used to
visualize the complete landscape of the MOP. Augmented by information on the
basins of attraction, this Plot of Landscapes with Optimal Trade-offs (PLOT)
becomes one of the most informative multi-objective landscape visualization
techniques available.
Related papers
- GLCONet: Learning Multi-source Perception Representation for Camouflaged Object Detection [23.872633359324098]
We propose a novel Global-Local Collaborative Optimization Network, called GLCONet.
In this paper, we first design a collaborative optimization strategy to simultaneously model the local details and global long-range relationships.
Experiments demonstrate that the proposed GLCONet method with different backbones can effectively activate potentially significant pixels in an image.
arXiv Detail & Related papers (2024-09-15T02:26:17Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - Centralized Feature Pyramid for Object Detection [53.501796194901964]
Visual feature pyramid has shown its superiority in both effectiveness and efficiency in a wide range of applications.
In this paper, we propose a OLO Feature Pyramid for object detection, which is based on a globally explicit centralized feature regulation.
arXiv Detail & Related papers (2022-10-05T08:32:54Z) - Double Graphs Regularized Multi-view Subspace Clustering [15.52467509308717]
We propose a novel Double Graphs Regularized Multi-view Subspace Clustering (DGRMSC) method.
It aims to harness both global and local structural information of multi-view data in a unified framework.
arXiv Detail & Related papers (2022-09-30T00:16:42Z) - Explicitly Multi-Modal Benchmarks for Multi-Objective Optimization [1.9282110216621833]
We introduce a benchmarking based on basin connectivity (3BC) by using basins of attraction.
The 3BC allows for the specification of a multimodal landscape through a kind of topological analysis called the basin graph.
arXiv Detail & Related papers (2021-10-07T05:51:32Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
Domain adaptive person Re-Identification (ReID) is challenging owing to the domain gap and shortage of annotations on target scenarios.
This paper proposes a coupling optimization method including the Domain-Invariant Mapping (DIM) method and the Global-Local distance Optimization ( GLO)
GLO is designed to train the ReID model with unsupervised setting on the target domain.
arXiv Detail & Related papers (2020-11-06T14:01:03Z) - Multiobjectivization of Local Search: Single-Objective Optimization
Benefits From Multi-Objective Gradient Descent [0.0]
We present a new concept of gradient descent, which is able to escape local traps.
We use a sophisticated visualization technique for multi-objective problems to prove the working principle of our idea.
arXiv Detail & Related papers (2020-10-02T13:56:44Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.