Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation
- URL: http://arxiv.org/abs/2309.00024v1
- Date: Thu, 31 Aug 2023 12:12:30 GMT
- Title: Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation
- Authors: Yi Wen, Suyuan Liu, Xinhang Wan, Siwei Wang, Ke Liang, Xinwang Liu,
Xihong Yang, Pei Zhang
- Abstract summary: We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
- Score: 59.49018175496533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anchor-based multi-view graph clustering (AMVGC) has received abundant
attention owing to its high efficiency and the capability to capture
complementary structural information across multiple views. Intuitively, a
high-quality anchor graph plays an essential role in the success of AMVGC.
However, the existing AMVGC methods only consider single-structure information,
i.e., local or global structure, which provides insufficient information for
the learning task. To be specific, the over-scattered global structure leads to
learned anchors failing to depict the cluster partition well. In contrast, the
local structure with an improper similarity measure results in potentially
inaccurate anchor assignment, ultimately leading to sub-optimal clustering
performance. To tackle the issue, we propose a novel anchor-based multi-view
graph clustering framework termed Efficient Multi-View Graph Clustering with
Local and Global Structure Preservation (EMVGC-LG). Specifically, a unified
framework with a theoretical guarantee is designed to capture local and global
information. Besides, EMVGC-LG jointly optimizes anchor construction and graph
learning to enhance the clustering quality. In addition, EMVGC-LG inherits the
linear complexity of existing AMVGC methods respecting the sample number, which
is time-economical and scales well with the data size. Extensive experiments
demonstrate the effectiveness and efficiency of our proposed method.
Related papers
- SLRL: Structured Latent Representation Learning for Multi-view Clustering [24.333292079699554]
Multi-View Clustering (MVC) aims to exploit the inherent consistency and complementarity among different views to improve clustering outcomes.
Despite extensive research in MVC, most existing methods focus predominantly on harnessing complementary information across views to enhance clustering effectiveness.
We introduce a novel framework, termed Structured Latent Representation Learning based Multi-View Clustering method.
arXiv Detail & Related papers (2024-07-11T09:43:57Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
In this paper, we propose a novel incomplete anchor graph learning framework.
We construct the view-specific anchor graph to capture the complementary information from different views.
The time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples.
arXiv Detail & Related papers (2023-08-31T08:30:26Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
A novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper.
The proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views.
The Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure.
arXiv Detail & Related papers (2022-11-28T01:18:04Z) - Double Graphs Regularized Multi-view Subspace Clustering [15.52467509308717]
We propose a novel Double Graphs Regularized Multi-view Subspace Clustering (DGRMSC) method.
It aims to harness both global and local structural information of multi-view data in a unified framework.
arXiv Detail & Related papers (2022-09-30T00:16:42Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.