Learning aligned embeddings for semi-supervised word translation using
Maximum Mean Discrepancy
- URL: http://arxiv.org/abs/2006.11578v1
- Date: Sat, 20 Jun 2020 13:57:55 GMT
- Title: Learning aligned embeddings for semi-supervised word translation using
Maximum Mean Discrepancy
- Authors: Antonio H. O. Fonseca and David van Dijk
- Abstract summary: We propose an end-to-end approach for word embedding alignment that does not require known word pairs.
Our method learns embeddings that are aligned during sentence translation training using a localized Maximum Mean Discrepancy (MMD) constraint.
We show that our method not only out-performs unsupervised methods, but also supervised methods that train on known word translations.
- Score: 3.299672391663527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Word translation is an integral part of language translation. In machine
translation, each language is considered a domain with its own word embedding.
The alignment between word embeddings allows linking semantically equivalent
words in multilingual contexts. Moreover, it offers a way to infer
cross-lingual meaning for words without a direct translation. Current methods
for word embedding alignment are either supervised, i.e. they require known
word pairs, or learn a cross-domain transformation on fixed embeddings in an
unsupervised way. Here we propose an end-to-end approach for word embedding
alignment that does not require known word pairs. Our method, termed Word
Alignment through MMD (WAM), learns embeddings that are aligned during sentence
translation training using a localized Maximum Mean Discrepancy (MMD)
constraint between the embeddings. We show that our method not only
out-performs unsupervised methods, but also supervised methods that train on
known word translations.
Related papers
- Tomato, Tomahto, Tomate: Measuring the Role of Shared Semantics among Subwords in Multilingual Language Models [88.07940818022468]
We take an initial step on measuring the role of shared semantics among subwords in the encoder-only multilingual language models (mLMs)
We form "semantic tokens" by merging the semantically similar subwords and their embeddings.
inspections on the grouped subwords show that they exhibit a wide range of semantic similarities.
arXiv Detail & Related papers (2024-11-07T08:38:32Z) - Third-Party Aligner for Neural Word Alignments [18.745852103348845]
We propose to use word alignments generated by a third-party word aligner to supervise the neural word alignment training.
Experiments show that our approach can surprisingly do self-correction over the third-party supervision.
We achieve state-of-the-art word alignment performances, with averagely more than two points lower alignment error rates than the best third-party aligner.
arXiv Detail & Related papers (2022-11-08T12:30:08Z) - DICTDIS: Dictionary Constrained Disambiguation for Improved NMT [50.888881348723295]
We present DictDis, a lexically constrained NMT system that disambiguates between multiple candidate translations derived from dictionaries.
We demonstrate the utility of DictDis via extensive experiments on English-Hindi and English-German sentences in a variety of domains including regulatory, finance, engineering.
arXiv Detail & Related papers (2022-10-13T13:04:16Z) - Unsupervised Alignment of Distributional Word Embeddings [0.0]
Cross-domain alignment play a key role in tasks ranging from machine translation to transfer learning.
We show that the proposed approach achieves good performance on the bilingual lexicon induction task across several language pairs.
arXiv Detail & Related papers (2022-03-09T16:39:06Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z) - Word Alignment by Fine-tuning Embeddings on Parallel Corpora [96.28608163701055]
Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs.
Recently, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data.
In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing
arXiv Detail & Related papers (2021-01-20T17:54:47Z) - Beyond Offline Mapping: Learning Cross Lingual Word Embeddings through
Context Anchoring [41.77270308094212]
We propose an alternative mapping approach for word embeddings in languages other than English.
Rather than aligning two fixed embedding spaces, our method works by fixing the target language embeddings, and learning a new set of embeddings for the source language that are aligned with them.
Our approach outperforms conventional mapping methods on bilingual lexicon induction, and obtains competitive results in the downstream XNLI task.
arXiv Detail & Related papers (2020-12-31T17:10:14Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
We make it possible for humans to adjust portions of a word embedding space by moving sets of words closer to one another.
Our approach allows users to trigger selective post-processing as they interact with and assess potential bias in word embeddings.
arXiv Detail & Related papers (2020-09-30T21:54:22Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word representations.
Our approach significantly improves crosslingual sentence retrieval performance over all other approaches.
It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task.
arXiv Detail & Related papers (2019-12-28T16:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.