Gradient-EM Bayesian Meta-learning
- URL: http://arxiv.org/abs/2006.11764v2
- Date: Wed, 18 Nov 2020 06:34:49 GMT
- Title: Gradient-EM Bayesian Meta-learning
- Authors: Yayi Zou, Xiaoqi Lu
- Abstract summary: Key idea behind Bayesian meta-learning is empirical Bayes inference of hierarchical model.
In this work, we extend this framework to include a variety of existing methods, before proposing our variant based on gradient-EM algorithm.
Experiments on sinusoidal regression, few-shot image classification, and policy-based reinforcement learning show that our method not only achieves better accuracy with less computation cost, but is also more robust to uncertainty.
- Score: 6.726255259929496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian meta-learning enables robust and fast adaptation to new tasks with
uncertainty assessment. The key idea behind Bayesian meta-learning is empirical
Bayes inference of hierarchical model. In this work, we extend this framework
to include a variety of existing methods, before proposing our variant based on
gradient-EM algorithm. Our method improves computational efficiency by avoiding
back-propagation computation in the meta-update step, which is exhausting for
deep neural networks. Furthermore, it provides flexibility to the inner-update
optimization procedure by decoupling it from meta-update. Experiments on
sinusoidal regression, few-shot image classification, and policy-based
reinforcement learning show that our method not only achieves better accuracy
with less computation cost, but is also more robust to uncertainty.
Related papers
- Enhancing binary classification: A new stacking method via leveraging computational geometry [5.906199156511947]
This paper introduces a novel approach that integrates computational geometry techniques, specifically solving the maximum weighted rectangle problem, to develop a new meta-model for binary classification.
Our method is evaluated on multiple open datasets, with statistical analysis showing its stability and demonstrating improvements in accuracy.
Our method is highly applicable not only in stacking ensemble learning but also in various real-world applications, such as hospital health evaluation scoring and bank credit scoring systems.
arXiv Detail & Related papers (2024-10-30T06:11:08Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - One Step at a Time: Pros and Cons of Multi-Step Meta-Gradient
Reinforcement Learning [61.662504399411695]
We introduce a novel method mixing multiple inner steps that enjoys a more accurate and robust meta-gradient signal.
When applied to the Snake game, the mixing meta-gradient algorithm can cut the variance by a factor of 3 while achieving similar or higher performance.
arXiv Detail & Related papers (2021-10-30T08:36:52Z) - Bayesian Meta-Learning Through Variational Gaussian Processes [0.0]
We extend Gaussian-process-based meta-learning to allow for high-quality, arbitrary non-Gaussian uncertainty predictions.
Our method performs significantly better than existing Bayesian meta-learning baselines.
arXiv Detail & Related papers (2021-10-21T10:44:23Z) - Faster Meta Update Strategy for Noise-Robust Deep Learning [62.08964100618873]
We introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient with a faster layer-wise approximation.
We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance.
arXiv Detail & Related papers (2021-04-30T16:19:07Z) - A contrastive rule for meta-learning [1.3124513975412255]
Meta-learning algorithms leverage regularities that are present on a set of tasks to speed up and improve the performance of a subsidiary learning process.
We present a gradient-based meta-learning algorithm based on equilibrium propagation.
We establish theoretical bounds on its performance and present experiments on a set of standard benchmarks and neural network architectures.
arXiv Detail & Related papers (2021-04-04T19:45:41Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Covariate Distribution Aware Meta-learning [3.494950334697974]
We propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations.
We demonstrate the gains of our algorithm over bootstrapped based meta-learning baselines on popular classification benchmarks.
arXiv Detail & Related papers (2020-07-06T05:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.