TreeRNN: Topology-Preserving Deep GraphEmbedding and Learning
- URL: http://arxiv.org/abs/2006.11825v2
- Date: Wed, 22 Jul 2020 13:45:36 GMT
- Title: TreeRNN: Topology-Preserving Deep GraphEmbedding and Learning
- Authors: Yecheng Lyu, Ming Li, Xinming Huang, Ulkuhan Guler, Patrick Schaumont,
Ziming Zhang
- Abstract summary: We study the methods to transfer the graphs into trees so that explicit orders are learned to direct the feature integration from local to global.
To best learn the patterns from the graph-tree-images, we propose TreeRNN, a 2D RNN architecture that recurrently integrates the image pixels by rows and columns to help classify the graph categories.
- Score: 24.04035265351755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General graphs are difficult for learning due to their irregular structures.
Existing works employ message passing along graph edges to extract local
patterns using customized graph kernels, but few of them are effective for the
integration of such local patterns into global features. In contrast, in this
paper we study the methods to transfer the graphs into trees so that explicit
orders are learned to direct the feature integration from local to global. To
this end, we apply the breadth first search (BFS) to construct trees from the
graphs, which adds direction to the graph edges from the center node to the
peripheral nodes. In addition, we proposed a novel projection scheme that
transfer the trees to image representations, which is suitable for conventional
convolution neural networks (CNNs) and recurrent neural networks (RNNs). To
best learn the patterns from the graph-tree-images, we propose TreeRNN, a 2D
RNN architecture that recurrently integrates the image pixels by rows and
columns to help classify the graph categories. We evaluate the proposed method
on several graph classification datasets, and manage to demonstrate comparable
accuracy with the state-of-the-art on MUTAG, PTC-MR and NCI1 datasets.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Learning Adaptive Neighborhoods for Graph Neural Networks [45.94778766867247]
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data.
We propose a novel end-to-end differentiable graph generator which builds graph topologies.
Our module can be readily integrated into existing pipelines involving graph convolution operations.
arXiv Detail & Related papers (2023-07-18T08:37:25Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Neural Trees for Learning on Graphs [19.05038106825347]
Graph Neural Networks (GNNs) have emerged as a flexible and powerful approach for learning over graphs.
We propose a new GNN architecture -- the Neural Tree.
We show that the neural tree architecture can approximate any smooth probability distribution function over an undirected graph.
arXiv Detail & Related papers (2021-05-15T17:08:20Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
We develop the textbfGraphCrop (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission.
By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense.
arXiv Detail & Related papers (2020-09-22T14:05:41Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.