Learning Adaptive Neighborhoods for Graph Neural Networks
- URL: http://arxiv.org/abs/2307.09065v1
- Date: Tue, 18 Jul 2023 08:37:25 GMT
- Title: Learning Adaptive Neighborhoods for Graph Neural Networks
- Authors: Avishkar Saha, Oscar Mendez, Chris Russell, Richard Bowden
- Abstract summary: Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data.
We propose a novel end-to-end differentiable graph generator which builds graph topologies.
Our module can be readily integrated into existing pipelines involving graph convolution operations.
- Score: 45.94778766867247
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph convolutional networks (GCNs) enable end-to-end learning on graph
structured data. However, many works assume a given graph structure. When the
input graph is noisy or unavailable, one approach is to construct or learn a
latent graph structure. These methods typically fix the choice of node degree
for the entire graph, which is suboptimal. Instead, we propose a novel
end-to-end differentiable graph generator which builds graph topologies where
each node selects both its neighborhood and its size. Our module can be readily
integrated into existing pipelines involving graph convolution operations,
replacing the predetermined or existing adjacency matrix with one that is
learned, and optimized, as part of the general objective. As such it is
applicable to any GCN. We integrate our module into trajectory prediction,
point cloud classification and node classification pipelines resulting in
improved accuracy over other structure-learning methods across a wide range of
datasets and GCN backbones.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Representing Long-Range Context for Graph Neural Networks with Global
Attention [37.212747564546156]
We propose the use of Transformer-based self-attention to learn long-range pairwise relationships.
Our method, which we call GraphTrans, applies a permutation-invariant Transformer module after a standard GNN module.
Our results suggest that purely-learning-based approaches without graph structure may be suitable for learning high-level, long-range relationships on graphs.
arXiv Detail & Related papers (2022-01-21T18:16:21Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
We develop the textbfGraphCrop (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission.
By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense.
arXiv Detail & Related papers (2020-09-22T14:05:41Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.