Quickest Intruder Detection for Multiple User Active Authentication
- URL: http://arxiv.org/abs/2006.11921v1
- Date: Sun, 21 Jun 2020 21:59:01 GMT
- Title: Quickest Intruder Detection for Multiple User Active Authentication
- Authors: Pramuditha Perera, Julian Fierrez, Vishal M. Patel
- Abstract summary: We formulate the Multiple-user Quickest Intruder Detection (MQID) algorithm.
We extend the algorithm to the data-efficient scenario where intruder detection is carried out with fewer observation samples.
We evaluate the effectiveness of the proposed method on two publicly available AA datasets on the face modality.
- Score: 74.5256211285431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate how to detect intruders with low latency for
Active Authentication (AA) systems with multiple-users. We extend the Quickest
Change Detection (QCD) framework to the multiple-user case and formulate the
Multiple-user Quickest Intruder Detection (MQID) algorithm. Furthermore, we
extend the algorithm to the data-efficient scenario where intruder detection is
carried out with fewer observation samples. We evaluate the effectiveness of
the proposed method on two publicly available AA datasets on the face modality.
Related papers
- STMixer: A One-Stage Sparse Action Detector [43.62159663367588]
We propose two core designs for a more flexible one-stage action detector.
First, we sparse a query-based adaptive feature sampling module, which endows the detector with the flexibility of mining a group of features from the entire video-temporal domain.
Second, we devise a decoupled feature mixing module, which dynamically attends to mixes along the spatial and temporal dimensions respectively for better feature decoding.
arXiv Detail & Related papers (2024-04-15T14:52:02Z) - PSDiff: Diffusion Model for Person Search with Iterative and
Collaborative Refinement [59.6260680005195]
We present a novel Person Search framework based on the Diffusion model, PSDiff.
PSDiff formulates the person search as a dual denoising process from noisy boxes and ReID embeddings to ground truths.
Following the new paradigm, we further design a new Collaborative Denoising Layer (CDL) to optimize detection and ReID sub-tasks in an iterative and collaborative way.
arXiv Detail & Related papers (2023-09-20T08:16:39Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - A Minimax Approach Against Multi-Armed Adversarial Attacks Detection [31.971443221041174]
Multi-armed adversarial attacks have been shown to be highly successful in fooling state-of-the-art detectors.
We propose a solution that aggregates the soft-probability outputs of multiple pre-trained detectors according to a minimax approach.
We show that our aggregation consistently outperforms individual state-of-the-art detectors against multi-armed adversarial attacks.
arXiv Detail & Related papers (2023-02-04T18:21:22Z) - TAD: Transfer Learning-based Multi-Adversarial Detection of Evasion
Attacks against Network Intrusion Detection Systems [0.7829352305480285]
We implement existing state-of-the-art models for intrusion detection.
We then attack those models with a set of chosen evasion attacks.
In an attempt to detect those adversarial attacks, we design and implement multiple transfer learning-based adversarial detectors.
arXiv Detail & Related papers (2022-10-27T18:02:58Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Variational Pedestrian Detection [33.52588723666144]
We develop a unique perspective of pedestrian detection as a variational inference problem.
We formulate a novel and efficient algorithm for pedestrian detection by modeling the dense proposals as a latent variable.
Our method can also be flexibly applied to two-stage detectors, achieving notable performance enhancement.
arXiv Detail & Related papers (2021-04-26T08:06:41Z) - Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape [0.11470070927586014]
We show that Isolation Forests, One-Class Support Vector Machines and Self-Organizing Maps are more effective than their counterparts for intrusion detection.
We detail how attacks with unstable, distributed or non-repeatable behavior as Fuzzing, Worms and Botnets are more difficult to detect.
arXiv Detail & Related papers (2020-12-21T14:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.