Bandit Quickest Changepoint Detection
- URL: http://arxiv.org/abs/2107.10492v3
- Date: Tue, 13 Jun 2023 05:39:46 GMT
- Title: Bandit Quickest Changepoint Detection
- Authors: Aditya Gopalan, Venkatesh Saligrama and Braghadeesh Lakshminarayanan
- Abstract summary: Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
- Score: 55.855465482260165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many industrial and security applications employ a suite of sensors for
detecting abrupt changes in temporal behavior patterns. These abrupt changes
typically manifest locally, rendering only a small subset of sensors
informative. Continuous monitoring of every sensor can be expensive due to
resource constraints, and serves as a motivation for the bandit quickest
changepoint detection problem, where sensing actions (or sensors) are
sequentially chosen, and only measurements corresponding to chosen actions are
observed. We derive an information-theoretic lower bound on the detection delay
for a general class of finitely parameterized probability distributions. We
then propose a computationally efficient online sensing scheme, which
seamlessly balances the need for exploration of different sensing options with
exploitation of querying informative actions. We derive expected delay bounds
for the proposed scheme and show that these bounds match our
information-theoretic lower bounds at low false alarm rates, establishing
optimality of the proposed method. We then perform a number of experiments on
synthetic and real datasets demonstrating the effectiveness of our proposed
method.
Related papers
- Unsupervised Novelty Detection Methods Benchmarking with Wavelet Decomposition [0.22369578015657962]
unsupervised machine learning algorithms for novelty detection are compared.
A new dataset is gathered from an actuator vibrating at specific frequencies to benchmark the algorithms and evaluate the framework.
Our findings offer valuable insights into the adaptability and robustness of unsupervised learning techniques for real-world novelty detection applications.
arXiv Detail & Related papers (2024-09-11T09:31:28Z) - Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection [11.14938737864796]
We propose CAPTAIN, a rule-based PIDS capable of automatically adapting to diverse environments.
We build a differentiable tag propagation framework and utilize the gradient descent algorithm to optimize these adaptive parameters.
The evaluation results demonstrate that CAPTAIN offers better detection accuracy, less detection latency, lower runtime overhead, and more interpretable detection alarms and knowledge.
arXiv Detail & Related papers (2024-04-23T03:50:57Z) - STMixer: A One-Stage Sparse Action Detector [43.62159663367588]
We propose two core designs for a more flexible one-stage action detector.
First, we sparse a query-based adaptive feature sampling module, which endows the detector with the flexibility of mining a group of features from the entire video-temporal domain.
Second, we devise a decoupled feature mixing module, which dynamically attends to mixes along the spatial and temporal dimensions respectively for better feature decoding.
arXiv Detail & Related papers (2024-04-15T14:52:02Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Partially Observable Online Change Detection via Smooth-Sparse
Decomposition [16.8028358824706]
We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities.
On the one hand, the detection scheme should be able to deal with partially observable data and meanwhile have efficient detection power for sparse changes.
In this paper, we propose a novel detection scheme called CDSSD. In particular, it describes the structure of high dimensional data with sparse changes by smooth-sparse decomposition.
arXiv Detail & Related papers (2020-09-22T16:03:04Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.