Modeling Lost Information in Lossy Image Compression
- URL: http://arxiv.org/abs/2006.11999v3
- Date: Wed, 8 Jul 2020 01:55:56 GMT
- Title: Modeling Lost Information in Lossy Image Compression
- Authors: Yaolong Wang, Mingqing Xiao, Chang Liu, Shuxin Zheng, Tie-Yan Liu
- Abstract summary: Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
- Score: 72.69327382643549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lossy image compression is one of the most commonly used operators for
digital images. Most recently proposed deep-learning-based image compression
methods leverage the auto-encoder structure, and reach a series of promising
results in this field. The images are encoded into low dimensional latent
features first, and entropy coded subsequently by exploiting the statistical
redundancy. However, the information lost during encoding is unfortunately
inevitable, which poses a significant challenge to the decoder to reconstruct
the original images. In this work, we propose a novel invertible framework
called Invertible Lossy Compression (ILC) to largely mitigate the information
loss problem. Specifically, ILC introduces an invertible encoding module to
replace the encoder-decoder structure to produce the low dimensional
informative latent representation, meanwhile, transform the lost information
into an auxiliary latent variable that won't be further coded or stored. The
latent representation is quantized and encoded into bit-stream, and the latent
variable is forced to follow a specified distribution, i.e. isotropic Gaussian
distribution. In this way, recovering the original image is made tractable by
easily drawing a surrogate latent variable and applying the inverse pass of the
module with the sampled variable and decoded latent features. Experimental
results demonstrate that with a new component replacing the auto-encoder in
image compression methods, ILC can significantly outperform the baseline method
on extensive benchmark datasets by combining with the existing compression
algorithms.
Related papers
- Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
arXiv Detail & Related papers (2024-05-17T03:52:37Z) - HybridFlow: Infusing Continuity into Masked Codebook for Extreme Low-Bitrate Image Compression [51.04820313355164]
HyrbidFlow combines the continuous-feature-based and codebook-based streams to achieve both high perceptual quality and high fidelity under extreme lows.
Experimental results demonstrate superior performance across several datasets under extremely lows.
arXiv Detail & Related papers (2024-04-20T13:19:08Z) - Neural Image Compression Using Masked Sparse Visual Representation [17.229601298529825]
We study neural image compression based on the Sparse Visual Representation (SVR), where images are embedded into a discrete latent space spanned by learned visual codebooks.
By sharing codebooks with the decoder, the encoder transfers codeword indices that are efficient and cross-platform robust.
We propose a Masked Adaptive Codebook learning (M-AdaCode) method that applies masks to the latent feature subspace to balance and reconstruction quality.
arXiv Detail & Related papers (2023-09-20T21:59:23Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Towards End-to-End Image Compression and Analysis with Transformers [99.50111380056043]
We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application.
We aim to redesign the Vision Transformer (ViT) model to perform image classification from the compressed features and facilitate image compression with the long-term information from the Transformer.
Experimental results demonstrate the effectiveness of the proposed model in both the image compression and the classification tasks.
arXiv Detail & Related papers (2021-12-17T03:28:14Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.