Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network
- URL: http://arxiv.org/abs/2405.10518v2
- Date: Sun, 25 Aug 2024 07:40:36 GMT
- Title: Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network
- Authors: Junhui Li, Xingsong Hou,
- Abstract summary: Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
- Score: 10.427300958330816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding remote sensing images to achieve high perceptual quality, particularly at low bitrates, remains a significant challenge. To address this problem, we propose the invertible neural network-based remote sensing image compression (INN-RSIC) method. Specifically, we capture compression distortion from an existing image compression algorithm and encode it as a set of Gaussian-distributed latent variables via INN. This ensures that the compression distortion in the decoded image becomes independent of the ground truth. Therefore, by leveraging the inverse mapping of INN, we can input the decoded image along with a set of randomly resampled Gaussian distributed variables into the inverse network, effectively generating enhanced images with better perception quality. To effectively learn compression distortion, channel expansion, Haar transformation, and invertible blocks are employed to construct the INN. Additionally, we introduce a quantization module (QM) to mitigate the impact of format conversion, thus enhancing the framework's generalization and improving the perceptual quality of enhanced images. Extensive experiments demonstrate that our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
Related papers
- Approximately Invertible Neural Network for Learned Image Compression [19.330720001489937]
This paper proposes an Approximately Invertible Neural Network (A-INN) framework for learned image compression.
It formulates the rate-distortion optimization in lossy image compression when using INN with quantization.
Extensive experiments demonstrate that the proposed A-INN outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2024-08-30T07:57:47Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
We develop a novel quantization (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization.
Our method designs a neural network architecture that predicts unquantized features from the quantized ones.
In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark.
arXiv Detail & Related papers (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Neural Image Compression Using Masked Sparse Visual Representation [17.229601298529825]
We study neural image compression based on the Sparse Visual Representation (SVR), where images are embedded into a discrete latent space spanned by learned visual codebooks.
By sharing codebooks with the decoder, the encoder transfers codeword indices that are efficient and cross-platform robust.
We propose a Masked Adaptive Codebook learning (M-AdaCode) method that applies masks to the latent feature subspace to balance and reconstruction quality.
arXiv Detail & Related papers (2023-09-20T21:59:23Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.