Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback
- URL: http://arxiv.org/abs/2112.02856v4
- Date: Fri, 29 Mar 2024 04:18:14 GMT
- Title: Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback
- Authors: Wenjia Ba, Tianyi Lin, Jiawei Zhang, Zhengyuan Zhou,
- Abstract summary: We study the class of textitsmooth and strongly monotone games and study optimal no-regret learning therein.
We first construct a new bandit learning algorithm and show that it achieves the single-agent optimal regret of $tildeTheta(nsqrtT)$.
Our results thus settle this open problem and contribute to the broad landscape of bandit game-theoretical learning.
- Score: 29.553652241608997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider online no-regret learning in unknown games with bandit feedback, where each player can only observe its reward at each time -- determined by all players' current joint action -- rather than its gradient. We focus on the class of \textit{smooth and strongly monotone} games and study optimal no-regret learning therein. Leveraging self-concordant barrier functions, we first construct a new bandit learning algorithm and show that it achieves the single-agent optimal regret of $\tilde{\Theta}(n\sqrt{T})$ under smooth and strongly concave reward functions ($n \geq 1$ is the problem dimension). We then show that if each player applies this no-regret learning algorithm in strongly monotone games, the joint action converges in the \textit{last iterate} to the unique Nash equilibrium at a rate of $\tilde{\Theta}(nT^{-1/2})$. Prior to our work, the best-known convergence rate in the same class of games is $\tilde{O}(n^{2/3}T^{-1/3})$ (achieved by a different algorithm), thus leaving open the problem of optimal no-regret learning algorithms (since the known lower bound is $\Omega(nT^{-1/2})$). Our results thus settle this open problem and contribute to the broad landscape of bandit game-theoretical learning by identifying the first doubly optimal bandit learning algorithm, in that it achieves (up to log factors) both optimal regret in the single-agent learning and optimal last-iterate convergence rate in the multi-agent learning. We also present preliminary numerical results on several application problems to demonstrate the efficacy of our algorithm in terms of iteration count.
Related papers
- Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms [71.73971094342349]
Self-play via online learning is one of the premier ways to solve large-scale two-player zero-sum games.
We show that OMWU offers several advantages including logarithmic dependence on the size of the payoff matrix.
We prove that a broad class of algorithms that do not forget the past quickly all suffer the same issue.
arXiv Detail & Related papers (2024-06-15T13:26:17Z) - Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback [75.29048190099523]
Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions.
In this paper, we design a fully adaptive OGD algorithm, textsfAdaOGD, that does not require a priori knowledge of these parameters.
arXiv Detail & Related papers (2023-10-21T18:38:13Z) - Doubly Optimal No-Regret Learning in Monotone Games [10.760195409078591]
We propose the first doubly optimal no-regret learning algorithm for smooth monotone games.
Our algorithm achieves both (i) the optimal $O(sqrtT)$ regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal $O(frac1T)$ last-iterate convergence rate to a Nash equilibrium.
arXiv Detail & Related papers (2023-01-30T17:55:53Z) - No-regret learning for repeated non-cooperative games with lossy bandits [5.437709019435926]
We study the asynchronous online learning strategy of the players to adaptively adjust the next actions for minimizing the long-term regret loss.
The paper provides a novel no-regret learning algorithm, called Online Gradient Descent with lossy bandits (OGD-lb)
arXiv Detail & Related papers (2022-05-14T05:02:56Z) - Near-Optimal Learning of Extensive-Form Games with Imperfect Information [54.55092907312749]
We present the first line of algorithms that require only $widetildemathcalO((XA+YB)/varepsilon2)$ episodes of play to find an $varepsilon$-approximate Nash equilibrium in two-player zero-sum games.
This improves upon the best known sample complexity of $widetildemathcalO((X2A+Y2B)/varepsilon2)$ by a factor of $widetildemathcalO(maxX,
arXiv Detail & Related papers (2022-02-03T18:18:28Z) - Almost Optimal Algorithms for Two-player Markov Games with Linear
Function Approximation [92.99933928528797]
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves.
We propose an algorithm Nash-UCRL-VTR based on the principle "Optimism-in-Face-of-Uncertainty"
We show that Nash-UCRL-VTR can provably achieve an $tildeO(dHsqrtT)$ regret, where $d$ is the linear function dimension.
arXiv Detail & Related papers (2021-02-15T09:09:16Z) - Impact of Representation Learning in Linear Bandits [83.17684841392754]
We study how representation learning can improve the efficiency of bandit problems.
We present a new algorithm which achieves $widetildeO(TsqrtkN + sqrtdkNT)$ regret, where $N$ is the number of rounds we play for each bandit.
arXiv Detail & Related papers (2020-10-13T16:35:30Z) - Near-Optimal Reinforcement Learning with Self-Play [50.29853537456737]
We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision.
We propose an optimistic variant of the emphNash Q-learning algorithm with sample complexity $tildemathcalO(SAB)$, and a new emphNash V-learning algorithm with sample complexity $tildemathcalO(S(A+B))$.
arXiv Detail & Related papers (2020-06-22T05:00:13Z) - Regret Minimization in Stochastic Contextual Dueling Bandits [40.17224226373741]
We consider the problem of $K$-armed dueling bandit in the contextual setting.
We present two algorithms for the setup with respective regret guarantees.
arXiv Detail & Related papers (2020-02-20T06:36:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.