DO-Conv: Depthwise Over-parameterized Convolutional Layer
- URL: http://arxiv.org/abs/2006.12030v1
- Date: Mon, 22 Jun 2020 06:57:10 GMT
- Title: DO-Conv: Depthwise Over-parameterized Convolutional Layer
- Authors: Jinming Cao, Yangyan Li, Mingchao Sun, Ying Chen, Dani Lischinski,
Daniel Cohen-Or, Baoquan Chen, Changhe Tu
- Abstract summary: We propose to augment a convolutional layer with an additional depthwise convolution, where each input channel is convolved with a different 2D kernel.
We show with extensive experiments that the mere replacement of conventional convolutional layers with DO-Conv layers boosts the performance of CNNs.
- Score: 66.46704754669169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional layers are the core building blocks of Convolutional Neural
Networks (CNNs). In this paper, we propose to augment a convolutional layer
with an additional depthwise convolution, where each input channel is convolved
with a different 2D kernel. The composition of the two convolutions constitutes
an over-parameterization, since it adds learnable parameters, while the
resulting linear operation can be expressed by a single convolution layer. We
refer to this depthwise over-parameterized convolutional layer as DO-Conv. We
show with extensive experiments that the mere replacement of conventional
convolutional layers with DO-Conv layers boosts the performance of CNNs on many
classical vision tasks, such as image classification, detection, and
segmentation. Moreover, in the inference phase, the depthwise convolution is
folded into the conventional convolution, reducing the computation to be
exactly equivalent to that of a convolutional layer without
over-parameterization. As DO-Conv introduces performance gains without
incurring any computational complexity increase for inference, we advocate it
as an alternative to the conventional convolutional layer. We open-source a
reference implementation of DO-Conv in Tensorflow, PyTorch and GluonCV at
https://github.com/yangyanli/DO-Conv.
Related papers
- LipKernel: Lipschitz-Bounded Convolutional Neural Networks via Dissipative Layers [0.0468732641979009]
We propose a layer-wise parameterization for convolutional neural networks (CNNs) that includes built-in robustness guarantees.
Our method Lip Kernel directly parameterizes dissipative convolution kernels using a 2-D Roesser-type state space model.
We show that the run-time using our method is orders of magnitude faster than state-of-the-art Lipschitz-bounded networks.
arXiv Detail & Related papers (2024-10-29T17:20:14Z) - LDConv: Linear deformable convolution for improving convolutional neural networks [18.814748446649627]
Linear Deformable Convolution (LDConv) is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance.
LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth.
arXiv Detail & Related papers (2023-11-20T07:54:54Z) - Mechanism of feature learning in convolutional neural networks [14.612673151889615]
We identify the mechanism of how convolutional neural networks learn from image data.
We present empirical evidence for our ansatz, including identifying high correlation between covariances of filters and patch-based AGOPs.
We then demonstrate the generality of our result by using the patch-based AGOP to enable deep feature learning in convolutional kernel machines.
arXiv Detail & Related papers (2023-09-01T16:30:02Z) - OneDConv: Generalized Convolution For Transform-Invariant Representation [76.15687106423859]
We propose a novel generalized one dimension convolutional operator (OneDConv)
It dynamically transforms the convolution kernels based on the input features in a computationally and parametrically efficient manner.
It improves the robustness and generalization of convolution without sacrificing the performance on common images.
arXiv Detail & Related papers (2022-01-15T07:44:44Z) - Content-Aware Convolutional Neural Networks [98.97634685964819]
Convolutional Neural Networks (CNNs) have achieved great success due to the powerful feature learning ability of convolution layers.
We propose a Content-aware Convolution (CAC) that automatically detects the smooth windows and applies a 1x1 convolutional kernel to replace the original large kernel.
arXiv Detail & Related papers (2021-06-30T03:54:35Z) - Orthogonalizing Convolutional Layers with the Cayley Transform [83.73855414030646]
We propose and evaluate an alternative approach to parameterize convolutional layers that are constrained to be orthogonal.
We show that our method indeed preserves orthogonality to a high degree even for large convolutions.
arXiv Detail & Related papers (2021-04-14T23:54:55Z) - PSConv: Squeezing Feature Pyramid into One Compact Poly-Scale
Convolutional Layer [76.44375136492827]
Convolutional Neural Networks (CNNs) are often scale-sensitive.
We bridge this regret by exploiting multi-scale features in a finer granularity.
The proposed convolution operation, named Poly-Scale Convolution (PSConv), mixes up a spectrum of dilation rates.
arXiv Detail & Related papers (2020-07-13T05:14:11Z) - Tensor decomposition to Compress Convolutional Layers in Deep Learning [5.199454801210509]
We propose to use CP-decomposition to approximately compress the convolutional layer (CPAC-Conv layer) in deep learning.
The contributions of our work could be summarized into three aspects: (1) we adapt CP-decomposition to compress convolutional kernels and derive the expressions of both forward and backward propagations for our proposed CPAC-Conv layer; (2) compared with the original convolutional layer, the proposed CPAC-Conv layer can reduce the number of parameters without decaying prediction performance; and (3) the value of decomposed kernels indicates the significance of the corresponding feature map.
arXiv Detail & Related papers (2020-05-28T02:35:48Z) - XSepConv: Extremely Separated Convolution [60.90871656244126]
We propose a novel extremely separated convolutional block (XSepConv)
It fuses spatially separable convolutions into depthwise convolution to reduce both the computational cost and parameter size of large kernels.
XSepConv is designed to be an efficient alternative to vanilla depthwise convolution with large kernel sizes.
arXiv Detail & Related papers (2020-02-27T11:46:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.