Tensor decomposition to Compress Convolutional Layers in Deep Learning
- URL: http://arxiv.org/abs/2005.13746v2
- Date: Mon, 31 May 2021 01:53:10 GMT
- Title: Tensor decomposition to Compress Convolutional Layers in Deep Learning
- Authors: Yinan Wang, Weihong "Grace" Guo, Xiaowei Yue
- Abstract summary: We propose to use CP-decomposition to approximately compress the convolutional layer (CPAC-Conv layer) in deep learning.
The contributions of our work could be summarized into three aspects: (1) we adapt CP-decomposition to compress convolutional kernels and derive the expressions of both forward and backward propagations for our proposed CPAC-Conv layer; (2) compared with the original convolutional layer, the proposed CPAC-Conv layer can reduce the number of parameters without decaying prediction performance; and (3) the value of decomposed kernels indicates the significance of the corresponding feature map.
- Score: 5.199454801210509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature extraction for tensor data serves as an important step in many tasks
such as anomaly detection, process monitoring, image classification, and
quality control. Although many methods have been proposed for tensor feature
extraction, there are still two challenges that need to be addressed: 1) how to
reduce the computation cost for high dimensional and large volume tensor data;
2) how to interpret the output features and evaluate their significance. {The
most recent methods in deep learning, such as Convolutional Neural Network
(CNN), have shown outstanding performance in analyzing tensor data, but their
wide adoption is still hindered by model complexity and lack of
interpretability. To fill this research gap, we propose to use CP-decomposition
to approximately compress the convolutional layer (CPAC-Conv layer) in deep
learning. The contributions of our work could be summarized into three aspects:
(1) we adapt CP-decomposition to compress convolutional kernels and derive the
expressions of both forward and backward propagations for our proposed
CPAC-Conv layer; (2) compared with the original convolutional layer, the
proposed CPAC-Conv layer can reduce the number of parameters without decaying
prediction performance. It can combine with other layers to build novel deep
Neural Networks; (3) the value of decomposed kernels indicates the significance
of the corresponding feature map, which provides us with insights to guide
feature selection.
Related papers
- Initialization Matters: On the Benign Overfitting of Two-Layer ReLU CNN with Fully Trainable Layers [20.25049261035324]
We extend the analysis to two-layer ReLU convolutional neural networks (CNNs) with fully trainable layers.
Our results show that the scaling of the output layer is crucial to the training dynamics.
In both settings, we provide nearly matching upper and lower bounds on the test errors.
arXiv Detail & Related papers (2024-10-24T20:15:45Z) - Kernel function impact on convolutional neural networks [10.98068123467568]
We study the usage of kernel functions at the different layers in a convolutional neural network.
We show how one can effectively leverage kernel functions, by introducing a more distortion aware pooling layers.
We propose Kernelized Dense Layers (KDL), which replace fully-connected layers.
arXiv Detail & Related papers (2023-02-20T19:57:01Z) - Shallow Network Based on Depthwise Over-Parameterized Convolution for
Hyperspectral Image Classification [0.7329200485567825]
This letter proposes a shallow model for hyperspectral image classification (HSIC) using convolutional neural network (CNN) techniques.
The proposed method outperforms other state-of-the-art methods in terms of classification accuracy and computational efficiency.
arXiv Detail & Related papers (2021-12-01T03:10:02Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - DeepReduce: A Sparse-tensor Communication Framework for Distributed Deep
Learning [79.89085533866071]
This paper introduces DeepReduce, a versatile framework for the compressed communication of sparse tensors.
DeepReduce decomposes tensors in two sets, values and indices, and allows both independent and combined compression of these sets.
Our experiments with large real models demonstrate that DeepReduce transmits fewer data and imposes lower computational overhead than existing methods.
arXiv Detail & Related papers (2021-02-05T11:31:24Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - DO-Conv: Depthwise Over-parameterized Convolutional Layer [66.46704754669169]
We propose to augment a convolutional layer with an additional depthwise convolution, where each input channel is convolved with a different 2D kernel.
We show with extensive experiments that the mere replacement of conventional convolutional layers with DO-Conv layers boosts the performance of CNNs.
arXiv Detail & Related papers (2020-06-22T06:57:10Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.