論文の概要: Progressive Graph Learning for Open-Set Domain Adaptation
- arxiv url: http://arxiv.org/abs/2006.12087v2
- Date: Tue, 30 Jun 2020 00:44:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 04:26:38.996790
- Title: Progressive Graph Learning for Open-Set Domain Adaptation
- Title(参考訳): オープンセット領域適応のためのプログレッシブグラフ学習
- Authors: Yadan Luo, Zijian Wang, Zi Huang, Mahsa Baktashmotlagh
- Abstract要約: ドメインシフトは、典型的にはソースとターゲットデータが異なる分布に従うときに発生する視覚認識の基本的な問題である。
本稿では、ターゲットデータにソースデータに存在しない追加のクラスを含むオープンセットドメインシフトのより現実的な問題に取り組む。
本稿では,その基礎となる条件シフトを抑制するために,エピソード学習を伴うグラフニューラルネットワークを統合したエンドツーエンドのプログレッシブグラフ学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 48.758366879597965
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain shift is a fundamental problem in visual recognition which typically
arises when the source and target data follow different distributions. The
existing domain adaptation approaches which tackle this problem work in the
closed-set setting with the assumption that the source and the target data
share exactly the same classes of objects. In this paper, we tackle a more
realistic problem of open-set domain shift where the target data contains
additional classes that are not present in the source data. More specifically,
we introduce an end-to-end Progressive Graph Learning (PGL) framework where a
graph neural network with episodic training is integrated to suppress
underlying conditional shift and adversarial learning is adopted to close the
gap between the source and target distributions. Compared to the existing
open-set adaptation approaches, our approach guarantees to achieve a tighter
upper bound of the target error. Extensive experiments on three standard
open-set benchmarks evidence that our approach significantly outperforms the
state-of-the-arts in open-set domain adaptation.
- Abstract(参考訳): ドメインシフトは、典型的にはソースとターゲットデータが異なる分布に従うときに発生する視覚認識の基本的な問題である。
この問題に取り組む既存のドメイン適応アプローチは、ソースとターゲットデータが全く同じオブジェクトクラスを共有していると仮定して、クローズドセット設定で機能する。
本稿では、ターゲットデータにソースデータに存在しない追加のクラスを含むオープンセットドメインシフトのより現実的な問題に取り組む。
より具体的には、エピソジックトレーニングを備えたグラフニューラルネットワークを統合して、基礎となる条件シフトを抑えるためのエンドツーエンドのプログレッシブグラフ学習(PGL)フレームワークを導入し、ソースとターゲットの分布間のギャップを埋めるために、対角学習を採用する。
既存のオープンセット適応手法と比較すると,本手法は目標誤差の上限を狭くすることを保証する。
3つの標準オープンセットベンチマークに関する広範囲な実験は、我々のアプローチがオープンセットドメイン適応の最先端を著しく上回っていることを示している。
関連論文リスト
- Reducing Source-Private Bias in Extreme Universal Domain Adaptation [11.875619863954238]
Universal Domain Adaptation (UniDA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的としている。
我々は、ソースドメインが重複するクラスよりもはるかに重複しないクラスを持つ場合、最先端のメソッドが苦労していることを示す。
対象データの構造を保存するために,自己教師付き学習を提案する。
論文 参考訳(メタデータ) (2024-10-15T04:51:37Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
対象データの識別クラスタリングとしてドメイン適応問題を再検討する。
本稿では,ラベル付き情報源データよりも並列に教師付き学習目標を用いて,ネットワークを協調的に訓練することを提案する。
5つの人気のあるベンチマークデータセットに対して、慎重にアブレーション研究と広範な実験を行う。
論文 参考訳(メタデータ) (2023-02-23T13:03:48Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Conditional Extreme Value Theory for Open Set Video Domain Adaptation [17.474956295874797]
本稿では,ソースとターゲットデータ間の領域差を軽減するために,オープンセットの映像領域適応手法を提案する。
負の伝達問題を緩和するために、サンプルエントロピーからしきい値までの距離によって計算された重みを、対向学習に活用する。
提案手法は,小規模と大規模の両方のクロスドメインビデオデータセットに対して徹底的に評価されている。
論文 参考訳(メタデータ) (2021-09-01T10:51:50Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Learning to Cluster under Domain Shift [20.00056591000625]
本研究では、ソースデータとターゲットデータの両方にアノテーションがない場合に、ソースからターゲットドメインに知識を転送する問題に対処する。
ディープクラスタリングに関する最近の研究から着想を得た私たちのアプローチは、複数のソースドメインから収集されたデータからの情報を活用する。
本手法は,少数のサンプルが存在する場合でも,関連する意味情報を自動的に発見できることを示す。
論文 参考訳(メタデータ) (2020-08-11T12:03:01Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。