Progressive Graph Learning for Open-Set Domain Adaptation
- URL: http://arxiv.org/abs/2006.12087v2
- Date: Tue, 30 Jun 2020 00:44:21 GMT
- Title: Progressive Graph Learning for Open-Set Domain Adaptation
- Authors: Yadan Luo, Zijian Wang, Zi Huang, Mahsa Baktashmotlagh
- Abstract summary: Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions.
In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data.
We introduce an end-to-end Progressive Graph Learning framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift.
- Score: 48.758366879597965
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain shift is a fundamental problem in visual recognition which typically
arises when the source and target data follow different distributions. The
existing domain adaptation approaches which tackle this problem work in the
closed-set setting with the assumption that the source and the target data
share exactly the same classes of objects. In this paper, we tackle a more
realistic problem of open-set domain shift where the target data contains
additional classes that are not present in the source data. More specifically,
we introduce an end-to-end Progressive Graph Learning (PGL) framework where a
graph neural network with episodic training is integrated to suppress
underlying conditional shift and adversarial learning is adopted to close the
gap between the source and target distributions. Compared to the existing
open-set adaptation approaches, our approach guarantees to achieve a tighter
upper bound of the target error. Extensive experiments on three standard
open-set benchmarks evidence that our approach significantly outperforms the
state-of-the-arts in open-set domain adaptation.
Related papers
- Reducing Source-Private Bias in Extreme Universal Domain Adaptation [11.875619863954238]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We show that state-of-the-art methods struggle when the source domain has significantly more non-overlapping classes than overlapping ones.
We propose using self-supervised learning to preserve the structure of the target data.
arXiv Detail & Related papers (2024-10-15T04:51:37Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
We re-cast the domain adaptation problem as discriminative clustering of target data.
We propose to jointly train the network using parallel, supervised learning objectives over labeled source data.
We conduct careful ablation studies and extensive experiments on five popular benchmark datasets.
arXiv Detail & Related papers (2023-02-23T13:03:48Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Conditional Extreme Value Theory for Open Set Video Domain Adaptation [17.474956295874797]
We propose an open-set video domain adaptation approach to mitigate the domain discrepancy between the source and target data.
To alleviate the negative transfer issue, weights computed by the distance from the sample entropy to the threshold are leveraged in adversarial learning.
The proposed method has been thoroughly evaluated on both small-scale and large-scale cross-domain video datasets.
arXiv Detail & Related papers (2021-09-01T10:51:50Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Learning to Cluster under Domain Shift [20.00056591000625]
In this work we address the problem of transferring knowledge from a source to a target domain when both source and target data have no annotations.
Inspired by recent works on deep clustering, our approach leverages information from data gathered from multiple source domains.
We show that our method is able to automatically discover relevant semantic information even in presence of few target samples.
arXiv Detail & Related papers (2020-08-11T12:03:01Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
We introduce a practical Domain Adaptation paradigm where a source-trained model is used to facilitate adaptation in the absence of the source dataset in future.
We present an objective way to quantify inheritability to enable the selection of the most suitable source model for a given target domain, even in the absence of the source data.
arXiv Detail & Related papers (2020-04-09T07:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.