Learning to Cluster under Domain Shift
- URL: http://arxiv.org/abs/2008.04646v1
- Date: Tue, 11 Aug 2020 12:03:01 GMT
- Title: Learning to Cluster under Domain Shift
- Authors: Willi Menapace, St\'ephane Lathuili\`ere and Elisa Ricci
- Abstract summary: In this work we address the problem of transferring knowledge from a source to a target domain when both source and target data have no annotations.
Inspired by recent works on deep clustering, our approach leverages information from data gathered from multiple source domains.
We show that our method is able to automatically discover relevant semantic information even in presence of few target samples.
- Score: 20.00056591000625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While unsupervised domain adaptation methods based on deep architectures have
achieved remarkable success in many computer vision tasks, they rely on a
strong assumption, i.e. labeled source data must be available. In this work we
overcome this assumption and we address the problem of transferring knowledge
from a source to a target domain when both source and target data have no
annotations. Inspired by recent works on deep clustering, our approach
leverages information from data gathered from multiple source domains to build
a domain-agnostic clustering model which is then refined at inference time when
target data become available. Specifically, at training time we propose to
optimize a novel information-theoretic loss which, coupled with
domain-alignment layers, ensures that our model learns to correctly discover
semantic labels while discarding domain-specific features. Importantly, our
architecture design ensures that at inference time the resulting source model
can be effectively adapted to the target domain without having access to source
data, thanks to feature alignment and self-supervision. We evaluate the
proposed approach in a variety of settings, considering several domain
adaptation benchmarks and we show that our method is able to automatically
discover relevant semantic information even in presence of few target samples
and yields state-of-the-art results on multiple domain adaptation benchmarks.
Related papers
- Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.