Hierarchical Inter-Message Passing for Learning on Molecular Graphs
- URL: http://arxiv.org/abs/2006.12179v1
- Date: Mon, 22 Jun 2020 12:25:24 GMT
- Title: Hierarchical Inter-Message Passing for Learning on Molecular Graphs
- Authors: Matthias Fey, Jan-Gin Yuen, Frank Weichert
- Abstract summary: We present a hierarchical neural message passing architecture for learning on molecular graphs.
Our method is able to overcome some of the restrictions known from classical GNNs, like detecting cycles, while still being very efficient to train.
- Score: 9.478108870211365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hierarchical neural message passing architecture for learning on
molecular graphs. Our model takes in two complementary graph representations:
the raw molecular graph representation and its associated junction tree, where
nodes represent meaningful clusters in the original graph, e.g., rings or
bridged compounds. We then proceed to learn a molecule's representation by
passing messages inside each graph, and exchange messages between the two
representations using a coarse-to-fine and fine-to-coarse information flow. Our
method is able to overcome some of the restrictions known from classical GNNs,
like detecting cycles, while still being very efficient to train. We validate
its performance on the ZINC dataset and datasets stemming from the MoleculeNet
benchmark collection.
Related papers
- Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Graph Contrastive Learning under Heterophily via Graph Filters [51.46061703680498]
Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder.
In this work, we propose an effective graph CL method, namely HLCL, for learning graph representations under heterophily.
Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.
arXiv Detail & Related papers (2023-03-11T08:32:39Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Molecular Graph Representation Learning via Heterogeneous Motif Graph
Construction [19.64574177805823]
We propose a novel molecular graph representation learning method by constructing a heterogeneous motif graph.
In particular, we build a heterogeneous motif graph that contains motif nodes and molecular nodes.
We show that our model achieves similar performances with significantly less computational resources by using our edge sampler.
arXiv Detail & Related papers (2022-02-01T16:21:01Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
We propose a Communicative Message Passing Transformer (CoMPT) neural network to improve the molecular graph representation.
Unlike the previous transformer-style GNNs that treat molecules as fully connected graphs, we introduce a message diffusion mechanism to leverage the graph connectivity inductive bias.
arXiv Detail & Related papers (2021-07-19T11:58:32Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.