Graph Networks with Spectral Message Passing
- URL: http://arxiv.org/abs/2101.00079v1
- Date: Thu, 31 Dec 2020 21:33:17 GMT
- Title: Graph Networks with Spectral Message Passing
- Authors: Kimberly Stachenfeld, Jonathan Godwin, Peter Battaglia
- Abstract summary: We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
- Score: 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are the subject of intense focus by the machine
learning community for problems involving relational reasoning. GNNs can be
broadly divided into spatial and spectral approaches. Spatial approaches use a
form of learned message-passing, in which interactions among vertices are
computed locally, and information propagates over longer distances on the graph
with greater numbers of message-passing steps. Spectral approaches use
eigendecompositions of the graph Laplacian to produce a generalization of
spatial convolutions to graph structured data which access information over
short and long time scales simultaneously. Here we introduce the Spectral Graph
Network, which applies message passing to both the spatial and spectral
domains. Our model projects vertices of the spatial graph onto the Laplacian
eigenvectors, which are each represented as vertices in a fully connected
"spectral graph", and then applies learned message passing to them. We apply
this model to various benchmark tasks including a graph-based variant of MNIST
classification, molecular property prediction on MoleculeNet and QM9, and
shortest path problems on random graphs. Our results show that the Spectral GN
promotes efficient training, reaching high performance with fewer training
iterations despite having more parameters. The model also provides robustness
to edge dropout and outperforms baselines for the classification tasks. We also
explore how these performance benefits depend on properties of the dataset.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
Current Graph Neural Networks (GNN) architectures rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling.
We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation.
This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance.
arXiv Detail & Related papers (2022-05-31T12:24:01Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Spectral Graph Attention Network with Fast Eigen-approximation [103.93113062682633]
Spectral Graph Attention Network (SpGAT) learns representations for different frequency components regarding weighted filters and graph wavelets bases.
Fast approximation variant SpGAT-Cheby is proposed to reduce the computational cost brought by the eigen-decomposition.
We thoroughly evaluate the performance of SpGAT and SpGAT-Cheby in semi-supervised node classification tasks.
arXiv Detail & Related papers (2020-03-16T21:49:34Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.